Skip to main content

Baroclinic Waves in Climates of the Earth’s Past

  • Chapter
Nonlinear Processes in Geophysical Fluid Dynamics

Abstract

Our understanding of the climates that have existed on Earth through its history has increased tremendously through a combination of geophysical fluid dynamics, geological evidence, and numerical modelling. Evolution of our Earth’s orbit redistributes incoming solar radiation latitudinally and temporally and is believed to have been responsible for changing the strength of the south Asian monsoon, expanding and contracting desert regions, and perhaps even initiating the (geologically) recent cycles of glaciation. Evolution of the atmosphere itself, in terms of the amount of atmospheric greenhouse gases in it, affects the amount of water vapour in the atmosphere, global temperatures, and meridional temperature gradients. Topographic forcing by the massive continental ice sheets that have existed in the past is believed to have significantly altered the jet stream circulation.

All of these factors-the distribution of incoming solar radiation, atmospheric greenhouse gases, and topograhic forcing-affect the mean baroclinic structure of our atmosphere, the amount of baroclinic wave activity present, and the eddy heat and momentum fluxes associated with these eddies. The equatorward flux of easterly momentum during the barotropic decay phase of these waves, in particular, plays a key role in determining the strength of upper level convergence and subsidence in the subtropics and, hence, the low-level meridional pressure gradient that helps to maintain the tropical trade winds. Through a series of numerical experiments with a coupled atmosphere-ocean general circulation model, it is shown that all of the factors listed above have played a role in determining the amount of baroclinic wave activity in climates of the Earth’s past and that changes in tropical circulations are consistent with the notion that the baroclinic eddy field plays an important role in determining the mean state in the tropics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreasen, D., and A. C. Ravelo, Tropical Pacific Ocean thermocline depth reconstructions for the Last Glacial, Paleoceanography, 12:395–414, 1997.

    Article  Google Scholar 

  • Barron, E.J., and W. Washington, The atmospheric circulation during warm, geologic periods: Is the equator-to-pole surface temperature gradient the controlling factor? Geology, 10:633–636, 1982.

    Article  Google Scholar 

  • Becker, E., G. Schmitz, and R. Geprags, The feedback of midlatitude waves onto the Hadley cell in a simple general circulation model. Tellus, 49A:182–199, 1997.

    Google Scholar 

  • Berger, A., Orbital variations and insolation database, IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series # 92-007. NOAA/N GDC Paleoclimatology Program, Boulder CO, USA.

    Google Scholar 

  • Berner, R.A., A model for atmospheric CO2 over Phanerozoic time, Am. J. Sci., 291:339–376, 1991.

    Article  Google Scholar 

  • Bush, A.B.G., Assessing the impact of mid-Holocene insolation on the atmosphere-ocean system. Geophy. Res. Lett., 26:99–102, 1999.

    Article  Google Scholar 

  • Bush, A.B.G., Simulating climates of the Last Glacial Maximum and of the mid-Holocene: Wind changes, atmosphere-ocean interactions, and the tropical thermocline. AGU Monograph Series 126 (The Oceans and Rapid Climate Change: Past, Present, and Future), 135–144, 2001.

    Google Scholar 

  • Bush, A.B.G. and S.G.H. Philander, The climate of the Last Glacial Maximum: Results from a coupled atmosphere-ocean general circulation model. J. Geophys. Res., 104:24509–24525, 1999.

    Article  Google Scholar 

  • Chang, E.K.M., Mean meridional circulation driven by eddy forcings of different time scales. J. Atmos. Sci., 53:113–125, 1996.

    Article  Google Scholar 

  • Clemens, S.C. and W.L. Prell, Late Pleistocene variability of Arabian Sea summer-monsoon winds and dust source-area aridity: A record from the lithogenic component of deep-sea sediments, Paleoceanography, 5:109–145, 1990.

    Article  Google Scholar 

  • Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) Project Members, Seasonal reconstructions of the Earth’s surface at the last glacial maximum, Map and Chart Series MC-36, Geol. Soc. of Am., Boulder, CO, 1981.

    Google Scholar 

  • Edmon, H.J., B.J. Hoskins, and M.E. McIntyre, Eliassen-Palm cross-sections for the troposphere, J. Atmos. Sci., 37:2600–2616, 1980.

    Article  Google Scholar 

  • Endal, A.S. and S. Sofia, Rotation in solar-type stars, I, Evolutionary models for the spindown of the sun. Astrophys. Jour., 243:625–640, 1981.

    Article  Google Scholar 

  • Fairbanks, R.G., A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on Younger Dryas event and deep-ocean circulation, Nature, 342:637–642, 1989.

    Article  Google Scholar 

  • Fedorov, A.V. and S.G.H. Philander, Is El Niño Changing? Science, 288:1997–2002, 2000.

    Article  Google Scholar 

  • Gordon, C.T., and W. Stern, A description of the GFDL global spectral model, Mon. Weather Rev., 110:625–644, 1982.

    Article  Google Scholar 

  • Hall, N.M.J., P.J. Valdes, and B. Dong, The maintenance of the last great ice sheets: A UGAMP GCM study, J. Clim., 9:1004–1019, 1996.

    Article  Google Scholar 

  • Haynes, P.H., and T.G. Shepherd, The importance of surface pressure changes in the response of the atmosphere to zonally-symmetric thermal and mechanical forcing, Q. J. R. Meteorol. Sci., 115:1181–1208, 1989.

    Article  Google Scholar 

  • Held, I.M., and A.Y. Hou, Nonlinear axially symmetric circulations in a nearly inviscid atmosphere, J. Atmos. Sci., 37:515–533, 1980.

    Article  Google Scholar 

  • Hoffman, P.F., A.J. Kaufman, G.P. Halverson, and D.P. Schrag, A Neoproterozoic snowball earth, Science, 281:1342–1346, 1998.

    Article  Google Scholar 

  • Hyde, W.T., T.J. Crowley, S.K. Baum, and W.R. Peltier, Neoproterozoic’ snowball Earth’ simulations with a coupled climate/ice-sheet model, Nature, 405:425–429, 2000.

    Article  Google Scholar 

  • Kim, H.K., and S. Lee, Hadley cell dynamics in a primitive equation model: Part I. Axisymmetric flow. J. Atmos. Sci., 58:2845–2858, 2001.

    Article  Google Scholar 

  • Kim, H.K., and S. Lee, Hadley cell dynamics in a primitive equation model: Part II. Nonaxisymmetric flow. J. Atmos. Sci., 58:2859–2871, 2001.

    Article  Google Scholar 

  • Kutzbach, J.E. and B.L. Otto-Bliesner (1982). The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years B.P. in a low-resolution general circulation model. J. Atmos. Sci., 39:1177–1188.

    Article  Google Scholar 

  • Lindzen, R.S., and A.Y. Hou, Hadley circulations for zonally averaged heating off the equator, J. Atmos. Sci., 45:2416–2427, 1988.

    Article  Google Scholar 

  • Lyle, M.W., F.G. Prahl, M.A. Sparrow, Upwelling and productivity changes inferred from a temperature record in the central equatorial Pacific, Nature, 355:812–815, 1992.

    Article  Google Scholar 

  • Otto-Bleisner, B.L., El Niño/La Niña and Sahel precipitation during the middle Holocene. Geophys. Res. Lett., 26:87–90, 1999.

    Article  Google Scholar 

  • Pacanowski, R.C., K. Dixon, and A. Rosati, The GFDL Modular Ocean Model user guide, GFDL Ocean Group Tech. Rep. 2, Geophys. Fluid Dyn. Lab., Princeton, N.J., 1991.

    Google Scholar 

  • Pedersen, T.F., Increased productivity in the eastern equatorial Pacific during the last glacial maximum (19,000 to 14,000 yr B.P.), Geology, 11:16–19, 1983.

    Article  Google Scholar 

  • Peixoto, J.P. and A.H. Oort, Physics of Climate, American Institute of Physics, New York, 520 pp., 1992.

    Google Scholar 

  • Peltier, W.R., Ice age paleotopography, Science, 265:195–201, 1994.

    Article  Google Scholar 

  • Pfeffer, R.L., Wave-mean flow interactions in the atmosphere. J. Atmos. Sci., 38:1340–1359, 1981.

    Article  Google Scholar 

  • Philander, S.G.H., El Niño and La Niña, J. Atmos. Sci., 42:2652–2662, 1985.

    Article  Google Scholar 

  • Philander, S.G.H., El Niño, La Niña, and the Southern Oscillation, Academic Press, New York, 293 pp., 1990.

    Google Scholar 

  • Prell, W.L., Monsoonal climate of the Arabian Sea during the late Quaternary: A response to changing solar radiation. In Milankovitch and Climate (A. Berger et al., Eds.), pp. 349–366. Reidel, Dordrecht, 1984.

    Google Scholar 

  • Prell, W.L. and J.E. Kutzbach, Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 360:647–652, 1992.

    Article  Google Scholar 

  • Rutter, N.W., Presidential Address, XIII INQUA Congress 1991: Chinese loess and global change, Quat. Sci. Rev., 11:275–281, 1992.

    Article  Google Scholar 

  • Sarnthein, M., G. Tetzlaff, B. Koopman, K. Wolter, and U. Pflaumann, Glacial and interglacial wind regimes over the eastern subtropical Atlantic and north-west Africa, Nature, 293:193–196, 1981.

    Article  Google Scholar 

  • Simmons, A.J. and B.J. Hoskins, Barotropic influences on the growth and decay of nonlinear baroclinic waves, J. Atmos. Sci., 37:1679–1684, 1980.

    Article  Google Scholar 

  • Sloan, L.C., and E.J. Barron, “Equable” climates during Earth history? Geology, 18:489–492, 1990.

    Article  Google Scholar 

  • Wright, H.E. Jr., J.E. Kutzbach, T. Webb III, W.F. Ruddiman, F.A. Street-Perrott, and P.J. Bartlein (Eds.), Global climates since the Last Glacial Maximum, 569 pp, University of Minnesota Press, Minneapolis, 1993.

    Google Scholar 

  • Xie, S.-P., Ocean-atmosphere interaction in the making of the Walker circulation and the equatorial cold tongue, J. Clim., 11:189–201, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bush, A.B.G. (2003). Baroclinic Waves in Climates of the Earth’s Past. In: Velasco Fuentes, O.U., Sheinbaum, J., Ochoa, J. (eds) Nonlinear Processes in Geophysical Fluid Dynamics. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0074-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0074-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3996-3

  • Online ISBN: 978-94-010-0074-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics