Gathering new data

Part of the Nato Science Series book series (NAIV, volume 32)


Editors’ introduction. We will now discuss how new data may help in solving some of the basic problems that both the classical as well as the PCS (Physics of Complex Systems) approaches leave open. We will analyze separately the time and spatial domains, since palaeoseismic and geodetic techniques allow to tackle them separately. The InSAR geodetic technique, however, is likely to allow to simultaneously resolve the detail in both the time and the spatial domains, at least with regard to the evolution on time scales ranging from a month to several years.


Coseismic Displacement Slant Range Interferometric Phase Space Geodesy International Earth Rotation Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambraseys, N. N., Melville, C. P., and Adams, R. D., 1994. The Seismicity of Egypt, Arabia and the Red Sea: a Historical Review, Cambridge University Press.Google Scholar
  2. Atwater, B. F., 1987. Evidence for great Holocene earthquakes along the outer coast of Washington State, Science, 236, 942–944.CrossRefGoogle Scholar
  3. Bamler, R., and Hartl, P., 1998. Synthetic aperture radar interferometry, Inverse Problems, 14(4), R1–R54.CrossRefGoogle Scholar
  4. Berryman, K. R., Ota, Y., and Gull, A. G., 1989. Holocene paleoseismicity in the fold and thrust belt of the Hikurangi subduction zone, eastern North Island, New Zealand, Tectonophysics, 163, 185–195.CrossRefGoogle Scholar
  5. Boucher, C., Altamini, L., and Sillard, P., 1997. The 1997 International Reference Frame (ITRF97), IERS Technical Notes, n. 27.Google Scholar
  6. Darienzo, M. E., and Peterson, C. D., 1990. Episodic tectonic subsidence of late Holocene salt marshes, northern Oregon central Cascadia margin, Tectonics, 9, 1–22.CrossRefGoogle Scholar
  7. Ferretti, A., Prati, C., and Rocca, F., 1999. Multibaseline InSAR DEM reconstruction: the wavelet approach, IEEE Trans. Geosci. Remote Sensing, 37, 705–715.CrossRefGoogle Scholar
  8. Ferretti, A., Prati, C., and Rocca, F., 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Trans. Geosci. Remote Sensing, 38, 2202–2212.CrossRefGoogle Scholar
  9. Ferretti, A., Prati, C., and Rocca, F., 2001. Permanent scatterers in SAR interferometry, IEEE Trans. Geosci. Remote Sensing, 39, 8–20.CrossRefGoogle Scholar
  10. Franceschetti, G., and Lanari, R., 1999. Synthetic Aperture Radar Processing, CRC Press, Boca Raton.Google Scholar
  11. Gabriel, A. K., Goldstein, R. M., and Zebker, H. A., 1989. Mapping small elevation changes over large areas, differential radar interferometry, J. Geophys. Res., 94, 9183.CrossRefGoogle Scholar
  12. Guidoboni, E., Comastri, A., and Traina, G., 1994. Catalogue of Ancient Earthquakes in the Mediterranean Area up to the 10th Century, Istituto Nazionale di Geofisica, Roma.Google Scholar
  13. Hanssen, R. F., 1998. Atmospheric heterogeneities in ERS tandem SAR interferometry, Tech. Rep. No. 98.1, Delft University Press, Delft.Google Scholar
  14. IGME (Institute of Geology and Mineral Exploration), 1989. Seismotectonic map of Greece. 1:500,000 scale. Athens.Google Scholar
  15. Jouannic, C., Taylor, F. W., and Bloom, A., 1982. Uplift and deformation of a young arc: the New Hebrides arc (in French) in Contribution à l’Étude Géodynamique du Sud-Ouest Pacifi que, Travaux et Documents ORSTOM, Paris, 147, 223–246.Google Scholar
  16. Kaizuka, S., Matsuda, T., Nogami, M., and Yonekura, N., 1973. Quaternary tectonic and recent seismic crustal movements in the Arauco Peninsula and its environs, central Chile, Geogr. Rep. Tokyo Metrop. Univ., 8, 1–49.Google Scholar
  17. Kawana, T., and Pirazzoli, P. A., 1985. Holocene coastline changes and seismic uplift in Okinawa Island, the Ryukyus, Japan. Zeits. Geomorphol., Suppl. 57, 11–31.Google Scholar
  18. Kontogianni, V. A., Tsoulos, N., and Stiros, S. C., 2002. Coastal uplift, earthquakesand active faulting of Rhodes Island (Aegean Arc): modeling based on geodetic inversion, Mar. Geol., 186, 299–317.CrossRefGoogle Scholar
  19. Laborel, J., and Laborel-Deguen, F., 1994. Biological indicators of relative sea-level variations and of co-seismic displacements in the Mediterranean region, J. Coastal Res., 10, 395–415.Google Scholar
  20. Liew, P. M., Pirazzoli, P. A., Hsieh, M. L., Arnold, M., Barusseau, J. P., Fontugne, M., and Giresse, P., 1993. Holocene tectonic uplift deduced from elevated shorelines, eastern Coastal Range of Taiwan, Tectonophysics, 222, 55–68.CrossRefGoogle Scholar
  21. Machida, H., Nakagawa, H., and Pirazzoli, P. A., 1976. Preliminary study on the Holocene sea level in the central Ryukyu Islands, Rev. Géomorphol. Dyn., 25, 49–62.Google Scholar
  22. Massonnet, D., and Feigl, K. L., 1998. Radar interferometry and its application to changes in the Earth’s surface, Rev. Geophys., 36, 441–500.CrossRefGoogle Scholar
  23. Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., and Rabaute, T., 1993. The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138–142.CrossRefGoogle Scholar
  24. Massonnet, D., Briole, P., and Arnaud, A. 1995. Deflation of the Mount Etna monitored by spaceborne radar interferometry, Nature, 375, 567–570.CrossRefGoogle Scholar
  25. Nakata, T., Koba, M., Jo, W., Imaizumi, T., Matsumoto, H., and Suganuma, T., 1979. Holocene marine terraces and seismic crustal movements, Sci. Rep. Tohoku Univ., 7th Ser. (Geogr.), 29, 195–204.Google Scholar
  26. Oskin, M., Sieh, K., Rockwell, T., Miller, G., Guptill, P., Curtis, M., McArdle, S., and Elliot, P., 2000. Active parasitic folds on the Elysian Park anticline: implications for seismic hazard in central Los Angeles, California, Bull. Geol. Soc. Am, 112, 693–707.CrossRefGoogle Scholar
  27. Ota, Y., 1985. Marine terraces and active faults in Japan with special reference to coseismic events, in Tectonic Geomorphology, Morisawa, M., and Hack, J. T. (eds.), Allen & Unwin, 345–366.Google Scholar
  28. Ota, Y., 1991. Coseismic uplift in coastal zones of the western Pacific rim and its implications for coastal evolution, Zeits. Geomorphol., Suppl. 81, 163–179.Google Scholar
  29. Ota, Y., Miyauchi, T., and Hull, A. G., 1990. Holocene marine terraces at Aramoana and Pourerere, eastern North Island, New Zealand, N. Z. J. Geol. Geophys., 33, 541–546.Google Scholar
  30. Ota, Y., Hull, A. G., and Berryman, K. R., 1991. Coseismic uplift of Holocene marine terraces in the Pakarae River area, eastern North Island, New Zealand Quat. Res., 35, 331–346.CrossRefGoogle Scholar
  31. Peltzer, G., Crampe, F., and King, G., 1999. Evidence of nonlinear elasticity of the crust from the Mw 7.6 Manyi (Tibet) earthquake, Science, 286, 272–276.CrossRefGoogle Scholar
  32. Pirazzoli, P. A., Laborel, J., and Stiros, S. C., 1996a. Earthquake clustering in the Eastern Mediterranean during historical times, J. Geophys. Res., 101, 6083–6097.CrossRefGoogle Scholar
  33. Pirazzoli, P. A., Laborel, J., and Stiros, S. C., 1996b. Coastal indicators of rapid uplift and subsidence: examples from Crete and other Mediterranean sites, Zeits. Geomorphol., Suppl. 102, 21–35.Google Scholar
  34. Pirazzoli, P. A., Montaggioni, L. F., Saliège, J. F., Segonzac, G., Thommeret, Y., and Vergnaud-Grazzini C., 1989. Crustal block movement from Holocene shorelines: Rhodes Island (Greece), Tectonophysics, 170, 89–114.CrossRefGoogle Scholar
  35. Pirazzoli, P. A., Stiros, S. C., Laborel, J., Laborel-Deguen, F., Arnold, M., Papageorgiou, S., and Morhange C., 1994. Late-Holocene shoreline changes related to palaeoseismic events in the Ionian Islands, Greece, The Holocene, 4, 397–405.CrossRefGoogle Scholar
  36. Reasenberg, P. A., 1999. Foreshock occurrence rates before large earthquakes worldwide, Pure Appl. Geophys., 155, 355–379.CrossRefGoogle Scholar
  37. Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., and Goldstein, R. M., 2000. Synthetic aperture radar interferometry, Invited paper, Proc. IEEE, 88, 333–382.CrossRefGoogle Scholar
  38. Scharroo, R., and Visser, P., 1998. Precise orbit determination and gravity field improvement for the ERS satellites, J. Geophys. Res., 103, 8113–8127.CrossRefGoogle Scholar
  39. Shennan, I., Scott, D. B., Rutherford, M., and Zong, Y., 1999. Microfossil analysis of sediments representing the 1964 earthquake, exposed at Girwood Flats, Alaska, USA, Quat. Int., 60, 55–73.CrossRefGoogle Scholar
  40. Sieh, K., Stuiver, M., and Brillinger, D., 1989. A more precise chronology of earthquakes produced by the San Andreas fault in Southern California, J. Geophys. Res., 94,603–623.CrossRefGoogle Scholar
  41. Sillard, P., and Boucher, C., 2001. A review of algebraic constraints in terrestrial reference frame datum definition, J. Geodesy, 75, 63–74.CrossRefGoogle Scholar
  42. Stiros, S. C., 2001. The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the Eastern Mediterranean: a review of historical and archaeological data, J. Struct. Geol., 23, 545–562.CrossRefGoogle Scholar
  43. Stiros, S. C., and Papageorgiou, S., 2001. Seismicity ofWestern Crete and the destruction of the town of Kisamos at AD 365: archaeological evidence, J. Seismol., 5, 381–397.CrossRefGoogle Scholar
  44. Taylor, F. W., Isacks, B. L., Jouannic, C., Bloom, A. L., and Dubois, J., 1980. Coseismic and Quaternary vertical tectonic movements, Santo and Malekula Islands, New Hebrides Island arc, J. Geophys. Res., 85, 5367–5381.CrossRefGoogle Scholar
  45. Wald, D. J., and Heaton, T. H., 1994. Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake, Bull. Seism. Soc. Am., 84, 668–691.Google Scholar
  46. Wellman, H. W., 1967. Tilted marine beach ridges at Cape Turakirae, New Zealand, J. Geosci. Osaka City Univ., 10, 123–129.Google Scholar
  47. Williams, S., Bock, Y., and Pang, P., 1998. Integrated satellite interferometry: tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products, J. Geophys. Res., 103, 27051–27067.CrossRefGoogle Scholar
  48. Yeats, R. S., Sieh, K., and Allen, C. R., 1997. The Geology of Earthquakes, Oxford University Press, New York.Google Scholar
  49. Yonekura, N., 1972. A review on seismic crustal deformations in and near Japan, Bull. Dep. Geogr. Univ. Tokyo, 4, 17–50.Google Scholar
  50. Yonekura, N., 1975. Quaternary tectonic movements in the outer arc of southwest Japan with special reference to seismic crustal deformation, Bull. Dep. Geogr.Univ. Tokyo, 7 , 19–71. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  1. 1.Università degli Studi di BolognaItaly
  2. 2.University of TokyoJapan

Personalised recommendations