Advertisement

Time-dependent hazard estimates and forecasts, and their uncertainties

Chapter
  • 251 Downloads
Part of the Nato Science Series book series (NAIV, volume 32)

Abstract

In section 4.2 we discussed current USGS efforts to estimate both long-term and short-term earthquake probabilities. Here we discuss a number of research topics that may help to improve these probability estimates. While many other topics could be discussed, these are representative of current work at the USGS. All of the work discussed in this section is by USGS authors and their collaborators. This section is not intended as a general review, because a great deal of work done outside the USGS is not covered.

Keywords

Fault Zone Focal Mechanism Large Earthquake Seismic Moment Seismic Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, M., Ensher, J. R., Matthews, M.R., Wieman, C.E., and Cornell, E. A., 1995. Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269, 198–201.CrossRefGoogle Scholar
  2. Beeler, N. M., Simpson, R.W., Lockner, D. A., and Hickman, S. H., 2000. Pore fluid pressure, apparent friction and Coulomb failure, J. Geophys. Res., 105, 25533–25542.CrossRefGoogle Scholar
  3. Bird, P., Kagan, Y.Y., Houston, H., and Jackson, D.D., 2000. Earthquake Potential Estimated from TectonicMotion, Eos, Trans. AGU, 81(48), Fall AGUMeet. Suppl., (abstract), F1226–1227.Google Scholar
  4. Console, R., 1998. Computer algorithms for testing earthquake forecasting hypotheses, Internal Report, Eq. Res. Inst., Tokyo Univ.Google Scholar
  5. Dieterich, J. H., 1972. Time-dependent friction in rocks, J. Geophys. Res., 77, 3690-3697.CrossRefGoogle Scholar
  6. Dieterich, J. H., 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res., 99, 2601–2618.CrossRefGoogle Scholar
  7. Dziewonski, A. M., Ekström, G., and Maternovskaya, N.N., 2001. Centroid-moment tensor solutions for April-June 2000, Phys. Earth Planet. Inter., 123, 1–14.CrossRefGoogle Scholar
  8. Eaton, M. L., and Sudderth, W. D., 1999. Consistency and strong inconsistency of groupinvariant predictive inferences, Bernoulli, 5, 833–854.CrossRefGoogle Scholar
  9. Ebel, J. E., Bonjer, K. P., and Oncescu, M. C., 2000. Paleoseismicity: seismicity evidence for past large earthquakes, Seism. Res. Lett., 71, 283–294.CrossRefGoogle Scholar
  10. Ellsworth, W. L., Matthews, M. V., Nadeau, R. M., Nishenko, S. P., Reasenberg, P. A., and Simpson, R.W., 1998. A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities, in Proceedings of the 2 nd Joint Meeting of the UJNR Panel on Earthquake Research, Geographical Survey Institute, Japan, 135–149.Google Scholar
  11. Feller, W., 1968. An Introduction to Probability Theory and Its Applications, vol. I., 3rd ed., John Wiley & Sons, Inc., New York.Google Scholar
  12. Freedman, D., 1995. Some issues in the foundations of statistics, Foundations of Science, 1, 19–39.Google Scholar
  13. Gomberg, J., Reasenberg, P., Bodin, P., and Harris, R., 2001. Earthquake triggering by transient seismic waves following the Landers and Hector Mine, California earthquakes, Nature, 411, 462–465.CrossRefGoogle Scholar
  14. Harris, R. A., 1998. Stress triggers, stress shadows, and implications for seismic hazard, introduction to the special issue, J. Geophys. Res., 103, 24347–24358.Google Scholar
  15. Hartigan, J., 1983. Bayes Theory, Springer-Verlag, New York.CrossRefGoogle Scholar
  16. Hickman, S. H., Zoback, M. D., Younker, L., and Ellsworth, W. L., 1994. Deep scientific drilling in the San Andreas fault zone, Eos, Trans. Am. Geophys. Union, 75, 137–142.CrossRefGoogle Scholar
  17. Jachens, R. C., and Griscom, A., 2003. Geologic and geophysical setting of the 1989 Loma Prieta earthquake, California, inferred from magnetic and gravity anomalies, in The Loma Prieta, California Earthquake of October 17, 1989 - Geologic Setting and Crustal Structure, Wells, R. (ed.), USGS.Google Scholar
  18. Jackson, D. D., and Kagan, Y. Y., 1999. Testable earthquake forecasts for 1999, Seism. Res. Lett., 70, 393–403.CrossRefGoogle Scholar
  19. Jackson, D. D., and Kagan, Y. Y., 2000. Earthquake Potential Estimated from Seismic History, Eos, Trans. AGU, 81(48), Fall AGU Meet. Suppl., (abstract), F1226.Google Scholar
  20. Jackson, D. D., Kagan, Y. Y., Rong, Y. F., and Shen, Z., 2001. Prospective Tests of Earthquake Forecasts, Eos, Trans. AGU, 82(47), Fall AGUMeet. Suppl., (abstract),Google Scholar
  21. S41C-04, F890–891.Google Scholar
  22. Jackson, D. D., Shen, Z. K., Potter, D., Ge, B. X., and Sung, L. Y., 1997. Southern California deformation, Science, 277, 1621–1622.CrossRefGoogle Scholar
  23. Kagan, Y. Y., 1991. Likelihood analysis of earthquake catalogs, Geophys. J. Int., 106, 135–148.CrossRefGoogle Scholar
  24. Kagan, Y. Y., 1994. Observational evidence for earthquakes as a nonlinear dynamic process, Physica D, 77, 160–192.CrossRefGoogle Scholar
  25. Kagan, Y. Y., 1997. Are earthquakes predictable?, Geophys. J. Int., 131, 505–525.CrossRefGoogle Scholar
  26. Kagan, Y. Y., 2000. Temporal correlations of earthquake focal mechanisms, Geophys. J. Int., 143, 881–897.CrossRefGoogle Scholar
  27. Kagan, Y. Y., 2002a. Seismic moment distribution revisited: I. Statistical results, Geophys. J. Int., 148, 520–541.CrossRefGoogle Scholar
  28. Kagan, Y. Y., 2002b. Seismic moment distribution revisited: II. Moment conservation principle, Geophys. J. Int., 149, 731–754.CrossRefGoogle Scholar
  29. Kagan, Y. Y., and Jackson, D. D., 1994. Long-term probabilistic forecasting of earthquakes, J. Geophys. Res., 99, 13685–13700.CrossRefGoogle Scholar
  30. Kagan, Y. Y., and Jackson, D. D., 2000. Probabilistic forecasting of earthquakes, Geophys. J. Int., 143, 438–453.CrossRefGoogle Scholar
  31. Kagan, Y. Y., and Knopoff, L., 1987. Statistical short-term earthquake prediction, Science, 236, 1563–1567.CrossRefGoogle Scholar
  32. Kagan, Y. Y., and Schoenberg, F., 2001. Estimation of the upper cutoff parameter for the tapered Pareto distribution, J. Appl. Probab., 38A, 158–175.CrossRefGoogle Scholar
  33. Kolmogorov, A., 1956. Foundations of the Theory of Probability, 2nd ed., Chelsea Publishing Co., New York.Google Scholar
  34. Lehmann, E., 1986. Testing Statistical Hypotheses, 2nd ed., John Wiley and Sons, New York.CrossRefGoogle Scholar
  35. Littlewood, J., 1953. A Mathematician’s Miscellany, Methuen & Co. Ltd., London.Google Scholar
  36. Michael, A. J., and Eberhart-Phillips, D. M., 1991. Relations among fault behavior, subsurface geology, and three-dimensional velocity models, Science, 253, 651–654.CrossRefGoogle Scholar
  37. Michael, A. J., and Jones, L. M., 1998. Seismicity alert probabilities at Parkfield, California, revisited, Bull. Seism. Soc. Amer., 88, 117–130.Google Scholar
  38. Molchan, G. M., and Kagan, Y. Y., 1992. Earthquake prediction and its optimization, J. Geophys. Res., 97, 4823–4838.CrossRefGoogle Scholar
  39. Ogata, Y., 1988. Statistical models for earthquake occurrence and residual analysis for point processes, J. Amer. Statist. Assoc., 83, 9–27.CrossRefGoogle Scholar
  40. Ogata, Y., 1998. Space–time point-process models for earthquake occurrences, Ann. Inst. Statist. Mech., 50, 379–402.CrossRefGoogle Scholar
  41. Parsons, T., 2002. Global Omori law decay of triggered earthquakes: large aftershocks outside the classical aftershock zone, J. Geophys. Res., 107 (B9), 2199, doi: 10.1029/2001JB000646.CrossRefGoogle Scholar
  42. Parsons, T., Toda, S., Stein, R. S., Barka, A., and Dieterich, J. H., 2000. Heightened odds of large earthquakes near Istanbul: an interaction-based probability calculation, Science, 288, 661–665.CrossRefGoogle Scholar
  43. Pollitz, F. F., Sacks, I. S., 2002. Stress triggering of the 1999 Hector Mine earthquake by transient deformation following the 1992 Landers earthquake, Bull. Seism. Soc. Am., 92, 1487–1496.CrossRefGoogle Scholar
  44. Reasenberg, P. A., 1999. Foreshock occurrence before large earthquakes, J. Geophys. Res., 104, 4755–4768.CrossRefGoogle Scholar
  45. Reasenberg, P. A., and Jones, L. M., 1989. Earthquake hazard after a mainshock in California, Science, 243, 1173–1176.CrossRefGoogle Scholar
  46. Reif, F., 1965. Fundamentals of Statistical and Thermal Physics, McGraw-Hill Book Publishing Co., New York.Google Scholar
  47. Shen, Z. K., Jackson, D. D., and Ge, B. X., 1996. Crustal deformation across and beyond the Los Angeles basin from geodetic measurements, J. Geophys. Res., 101, 27957–27980.CrossRefGoogle Scholar
  48. Stigler, S., 1986. The History of Statistics: the Measurement of Uncertainty before 1900, Harvard University Press, Cambridge, MA.Google Scholar
  49. Utsu, T., and Ogata, Y., 1997. Statistical analysis of seismicity, in IASPEI Software Library, 6, Healy, J. H., Keilis-Borok, V. I., and Lee, W. H. K. (eds.), Int. Assoc. of Seismol. and Phys. of the Earth’s Inter. And Seismol. Soc. Am., El Cerrito, CA, 13–94.Google Scholar
  50. Vere-Jones, D., 1970. Stochastic models for earthquake occurrence (with discussion), J. Roy. Stat. Soc., B32, 1–62.Google Scholar
  51. Waldhauser, F., and Ellsworth, W. L., 2000. A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California, Bull. Seism. Soc. Am., 90, 1353–1368.CrossRefGoogle Scholar
  52. WG99: Working Group on California Earthquake Probabilities, 1999. Earthquake Probabilities in the San Francisco Bay Region: 2000-2030–A Summary of Findings, Technical Report Open-File Report, 99-517, USGS, Menlo Park, CA.Google Scholar
  53. Wiemer, S., 2000. Introducing probabilistic aftershock hazard mapping, Geophys. Res. Lett., 27, 3405–3408.CrossRefGoogle Scholar
  54. Wiemer, S., 2001. Adding time-dependent elements to earthquake hazard mapping, Second International Workshop on Statistical Seismology, 18–21 April 2001, held at Victoria University of Wellington, abstract.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  1. 1.Università degli Studi di BolognaItaly
  2. 2.University of TokyoJapan

Personalised recommendations