The classical view of earthquakes

Part of the Nato Science Series book series (NAIV, volume 32)


The in situ recognition of the evidence of past earthquakes is a task which involves all the branches of geology. Signs of a past earthquake, in fact, can be identified on the landscape morphology and in the rocks generated by fault movements on the fault zone.


Shear Zone Fault Plane Seismic Moment Moment Tensor Fault Slip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, R., and Mori, J., 1994. Local observation of the onset of a large earthquake: 28 June 1992 Landers, California, Bull. Seism. Soc. Am., 84, 725–734.Google Scholar
  2. Abercrombie, R. E., and Mori, J., 1996. Occurrence patterns of foreshocks to large earthquakes in the western United States, Nature, 381, 303–307.Google Scholar
  3. Allen, A. R., 1979. Mechanisms of frictional fusion in fault zones, J. Struct. Geol., 1, 231-343.Google Scholar
  4. Anagnos, T., and Kiremidjian, A. S., 1984. Stochastic time-predictable model for earthquake occurrences, Bull. Seism. Soc. Am., 74, 2593–2611.Google Scholar
  5. Anderson, J., and Chen, Q., 1995. Beginning of earthquake in the Mexican subduction zone on strong-motion accelerograms, Bull. Seism. Soc. Am., 85, 1107–1116.Google Scholar
  6. Andrews, D. J., 1976a. Rupture propagation with finite stress in antiplane strain, J. Geophys. Res., 81, 3575–3582.Google Scholar
  7. Andrews, D. J., 1976b. Rupture velocity of plane strain shear cracks, J. Geophys. Res., 81, 5679–5687.Google Scholar
  8. Andrews, D. J., 1985. Dynamic plane-strain shear rupture with a slip weakening friction law calculated by a boundary integral methods, Bull. Seism. Soc. Am., 75, 1–21.Google Scholar
  9. Andrews, D. J., and Hanks, T. C., 1985. Scarps degraded by linear diffusion: inverse solution for age, J. Geophys. Res., 90, 10193–10208.Google Scholar
  10. Argus, D. F., and Lyzenga, G. A., 1994. Site velocities before and after the Loma Prieta and Gulf of Alaska earthquakes determined from VLBI, Geophys. Res. Lett., 21, 333–336.Google Scholar
  11. Armigliato A., 2001. A Two-dimensional Numeric Model to Calculate the Effect of To-pography and the Mean Heterogeneity on the Coseismic Displacement and Strain in the Near Field (in Italian), Ph. D. Thesis., Universit`a di Genova, Italy.Google Scholar
  12. Arvidsson, R., and Ekström, G., 1998. Global CMT analysis of moderate earthquakes Mw ≥ 4.5 using intermediate-period surface waves, Bull. Seism. Soc. Am., 88, 1003–1013.Google Scholar
  13. Ashby, M. F., and Hallam, S.D., 1986. The failure of brittle solids containing small cracks under compressive stress states, Acta Metall., 34, 497–510.Google Scholar
  14. Ashby, M. F, and Sammis, C. G., 1990. The damage mechanics of brittle solids in compression, Pure Appl. Geophys., 133, 489–521.Google Scholar
  15. Atkinson, B. K., and Meredith, P. G., 1987. Theory of subcritical crack growth with application to minerals and rocks, in Fracture Mechanics of Rock, Atkinson, B. K. (ed.), Academic Press, London, 111–166.Google Scholar
  16. Austrheim, H., and Boundy, T. M., 1994. Pseudotachylytes generated during seismic faulting and eclogitization of the deep crust, Science, 265, 82–83.Google Scholar
  17. Baumgartner, J., and Zoback, M. D., 1989. Interpretation of hydraulic fracturing pressure-time records using interactive analysis method, Int. J. Rock Mech. Min. Sci., 26, 461–469.Google Scholar
  18. Belardinelli, M. E., Cocco, M., Coutant, O., and Cotton, F, 1999. Redistributin of dynamic stress during coseismic ruptures: evidence for fault interaction and earthquake triggering, J. Geophys. Res., 104, 14925–14945.Google Scholar
  19. Bell, T. H., and Etheridge, M. A., 1973. Microstructure of mylonites and their terminology, Lithos, 6, 337–348.Google Scholar
  20. Ben-Menahem, A., and Singh, S. J. S., 1981. Seismic Waves and Sources, Springer-Verlag, New York.Google Scholar
  21. Ben-Zion, Y., 2001. Dynamic ruptures in recent models of earthquake faults. J. Mech. Phys. Solids, 49, 2209–2244.Google Scholar
  22. Bird, P., Kagan, Y. Y., and Jackson, D. D., 2002. Plate tectonics and earthquake potential of spreading ridges and oceanic transform faults, in Plate Boundary Zones, AGU Monograph, Stein, S., and Freymueller, J. T. (eds.), 203–218.Google Scholar
  23. Boullier, A. M., Ohtani, T., Fujimoto, K., Ito, H., and Dubois, M., 2001. Fluid inclusions in pseudotachylytes from the Nojima Fault, J. Geoph. Res., 106, 21965–21977.Google Scholar
  24. Brodsky, E. E., and Kanamori, H., 2001. Elastohydrodynamic lubrication of faults, J. Geophys. Res., 106, 16357–16374.Google Scholar
  25. Bruce, A., and Wallace, D., 1989. Critical point phenomena: universal physics at large length scales, in The New Physics, Davies, P. (ed.), Cambridge University Press, Cambridge, 236–267.Google Scholar
  26. Brudy, M., Zoback, M. D., Fuchs, K., Rummel, F., and Baumgartner, J., 1997. Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: implications for crustal strength, J. Geophys. Res.,102, 18453–18475.Google Scholar
  27. Brune, J. N., 1968. Seismic moment, seismicity, and rate of slip along major fault zones, J. Geophys. Res., 73, 777-784.Google Scholar
  28. Brune, J. N., 1979. Implications of earthquake triggering and rupture propagation for earthquake prediction based on premonitory phenomena, J. Geophys. Res., 84, 2195–2198Google Scholar
  29. Brune, J. N., Henyey, T. L., and Roy, R. F., 1969. Heat fbw, stress and rate of slip along the San Andreas Fault, California, J. Geophys. Res., 74, 3821–3827.Google Scholar
  30. Bufe, C. G., and Varnes, D. J., 1993. Predictive modeling of the seismic cycle of the greater San Francisco Bay region, J. Geophys. Res., 98, 9871–9883.Google Scholar
  31. Bufe, C. G., Harsh, P. W., and Burford, A. O., 1977. Steady-state seismic slip–A precise recurrence model, Geophys. Res. Lett., 4, 91–94.Google Scholar
  32. Burnham, C. W., Holloway, J. R., and Davis, N. F., 1969. Thermodynamic properties of water to 1000oC and 10,000 bars, Geol. Soc. Amer, Special Paper, 132.Google Scholar
  33. Byerlee, J. D., 1970. The mechanics of stick-slip, Tectonophysics, 9, 475–486.Google Scholar
  34. Byerlee, J.D., 1978. Friction of rocks, Pure Appl. Geophys., 116, 615–629.Google Scholar
  35. Camelbeeck, T., and Meghraoui, M., 1996. Large earthquakes in northern Europe more likely than once thought, Eos, Trans. Am. Geophys. Union, 77, 405–409.Google Scholar
  36. Camelbeeck, T., and Meghraoui, M., 1998. Geological and geophysical evidence for large palaeo-earthquakes with surface faulting in the Roer Graben (northwest Europe), Geophys. J. Int., 132, 347–362.Google Scholar
  37. Carlson, J. M., and Langer, J. S., 1989. Properties of earthquakes generated by fault dynamics, Phys. Rev. Lett., 22, 2632–2635.Google Scholar
  38. Carslaw, H. S., and Jaeger, J. C., 1986. Conduction of Heat in Solids, 2nd ed., Oxford University Press, Oxford.Google Scholar
  39. Castellaro, S., and Mulargia, F., 2001. A simple but effective cellular automaton for earthquakes, Geophys. J. Int., 144, 609–624.Google Scholar
  40. Castellaro, S., and Mulargia, F., 2002. What criticality in cellular automata models for earthquakes?, Geophys. J. Int., 150, 483–493.Google Scholar
  41. Cladouhos, T. T., 1999a. Shape preferred orientations of survivor grains in fault gouge, J. Struct. Geol., 21, 419–436.Google Scholar
  42. Cladouhos, T. T., 1999b. A kinematic model for deformation within brittle shear zones, J. Struct. Geol., 21, 437–448.Google Scholar
  43. Clark, S.P., (ed.), 1966. Handbook of Physical Constants, Geol. Soc. Am. Mem., New York.Google Scholar
  44. Cochard, A., and Madariaga, R., 1994. Dynamic faulting under rate-dependent friction, Pure Appl. Geophys., 142, 419–445.Google Scholar
  45. Costin, L. S., 1987. Time-dependent deformation and failure, in Fracture Mechanics of Rock, Atkinson, B. K. (ed.), Academic Press, London, 111–166.Google Scholar
  46. Cowan, D. S., 1999. Do faults preserve a record of seismic faulting? A field geologist’s opinion, J. Struct. Geol, 21, 995–1001.Google Scholar
  47. Crespellani, T., Nardi, R., and Simoncini, C., 1988. Earth’s Liquefaction under Seismic Conditions (in Italian), Ed. Zanichelli, Bologna.Google Scholar
  48. Das, S., and Scholz, C. H., 1981a. Theory of time-dependent rupture in the Earth, J. Geophys. Res., 86, 6039–6051.Google Scholar
  49. Das, S., and Scholz, C. H., 1981b. Off-fault aftershock clusters caused by shear stress increase?, Bull. Seism. Soc. Am., 71, 1669–1675.Google Scholar
  50. DeMets, C., 1995. Plate motions and crustal deformation, US National Report to the International Union of Geodesy and Geophysics, 1991-1994, Rev. Geophys., 33, 365-369.Google Scholar
  51. Deng, J. S., and Sykes, L. R., 1996. Triggering of 1812 Santa Barbara earthquake by a great San Andreas shock: implications for future seismic hazards in southern California, Geophys. Res. Lett., 23, 1155–1158.Google Scholar
  52. Dieterich, J. H., 1972. Time-dependent friction as a possible mechanism for aftershocks, J. Geophys. Res., 77, 3771–3781.Google Scholar
  53. Dieterich, J. H., 1979a. Modeling of rock friction 1, Experimental results and constitutive equations, J. Geophys. Res., 84, 2161–2168.Google Scholar
  54. Dieterich, J. H., 1979b. Modeling of rock friction 2, Simulation of preseismic slip, J. Geophys. Res., 84, 2169–2175.Google Scholar
  55. Dieterich, J. H., 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res., 99, 2601–2618.Google Scholar
  56. Dolan, J. F., Sieh, K., and Rockwell, T. K., 2000. Late quaternary activity and seismic potential of the Santa Monica fault system, Los Angeles, California, Geol. Soc. Am. Bull, 112, 1559–1581.Google Scholar
  57. Du, Y., and Aydin, A., 1993. Stress transfer during three sequential moderate earthquakes along the central Calaveras fault, California, J. Geophys. Res., 98, 9947–9962.Google Scholar
  58. Dziewonski, A. M., and Anderson D. L., 1981. Preliminary reference earth model (PREM), Phys. Earth Planet. Int., 25, 297–356.Google Scholar
  59. Ellsworth, W. L., and Beroza, G. C., 1995. Seismic evidence for an earthquake nucleation phase, Science, 268, 851–855.Google Scholar
  60. Eshelby, J. B., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. London, A241, 376–396.Google Scholar
  61. Eshelby, J. B., 1969. The elastic field of a crack extending nonuniformly under general anti-plane loading, J. Mech. Phys. Solids, 17, 177–199.Google Scholar
  62. Fabbri, O., Lin, A., and Tokushige, H., 2000. Coeval formation of cataclasite and pseudotachylyte in a Miocene forearc granodiorite, southern Kyushu, Japan, J. Struct. Geol., 22, 1015–1025Google Scholar
  63. Faure, G. C., 1986. Principle of Isotope Geology, 2nd ed., John Wiley & Sons.Google Scholar
  64. Fernandez, M., Molina, E., Havskov, J., and Atakan K., 2000. Tsunamis and Tsunami Hazards in Central America, Nat. Haz., 22, 91–116.Google Scholar
  65. Francis, P. W., 1972. The pseudotachylyte problem, Comments Earth Sci. Geophys., 3, 35–53.Google Scholar
  66. Freund, L. B., 1998. Dynamic Fracture Mechanics, Cambridge University Pres, New York.Google Scholar
  67. Fujii, Y., Kiyama, T., Ishijima, Y., and Kodama, J., 1998. Examination of a rock failure criterion based on circumferential tensile strain, Pure Appl. Geophys., 152, 551–577.Google Scholar
  68. Gathercole, N., Reiter, H., Adam, T., and Harris, B., 1994. Life prediction for fatigue of T800/5245 carbon-fiber composites. 1. Constant-amplitude loading, Int. J. Fatigue, 16, 523–532.Google Scholar
  69. Geist, E. L., 1998. Local tsunamis and earthquake source parameters, Adv. Geophys., 39, 117–209.Google Scholar
  70. Geller, R. J., 1997. Earthquake prediction: a critical review, Geophys. J. Int., 131, 425–450.Google Scholar
  71. Geller, R. J., and Kanamori, H., 1977. Magnitudes of great shallow earthquakes from 1904 to 1952, Bull. Seism. Soc. Am., 67, 587–598.Google Scholar
  72. Goldsby, D. L., and Tullis, T. E., 2002. Low frictional strength of quartz rocks at subseismic slip rates, Geophys. Res. Lett., 29(17), 1–4, doi: 10.1029/2002GL01240.Google Scholar
  73. Grasso, J. R., and Sornette, D., 1998. Testing self-organized criticality by induced seismicity, J. Geophys. Res., 103, 29965–29987.Google Scholar
  74. Griffith, A. A., 1920. The phenomena of rupture and fbw in solids, Phil. Trans. Roy. Soc. London, A221, 163–198.Google Scholar
  75. Griffith, A. A., 1922. The theory of rupture, in Proc. 1 st Int. Congr. Appl. Mech., Delft: Tech. Boekhandel en Drukkerj, Biezeno, C. B. and Burgers, J. M. (eds.), J. Waltman Jr., 54–63.Google Scholar
  76. Gross, S. J., and Kisslinger, C., 1994. Stress and the spatial distribution of seismicity in the central Aleutians, J. Geophys. Res., 99, 15291–15303.Google Scholar
  77. Gross, S., and Rundle, J., 1998. A systematic test of time-to-failure analysis, Geophys. J. Int., 133, 57–64.Google Scholar
  78. Gutenberg, B., and Richter, C. F., 1941. Seismicity of the Earth, Geol. Soc. Amer., Special Papers, 34, 11–31.Google Scholar
  79. Gutenberg, B., and Richter, C. F., 1944. Frequency of earthquakes in California, Bull. Seism. Soc. Am., 34, 185–188.Google Scholar
  80. Gutenberg, B., and Richter, C. F., 1956. Magnitude and energy of earthquakes, Ann. Geofi s., 9, 1–15.Google Scholar
  81. Hammerberg, J. E., Holian, B. L., Roder, J., Bishop, A. R., and Zhou, S. J., 1998. Nonlinear dynamics and the problem of slip at material interfaces, Physica D, 123, 330–340.Google Scholar
  82. Hampton, M. A., Lee, H. J., and Locat, J., 1996. Submarine landslides, Rev. Geophys., 34, 33–59.Google Scholar
  83. Hardebeck, J. L., Nazareth, J. J., and Hauksson, E., 1998. The static stress change triggering model: constraints from two southern California aftershock sequences, J. Geophys. Res., 103, 24427–24437.Google Scholar
  84. Harris, R. A., 1998. Introduction to special section: stress triggers, stress shadows and implications for seismic hazard, J. Geophys. Res., 103, 24347–24358.Google Scholar
  85. Harris, R. A., and Simpson, R. W., 1992. Changes in static stress on southern California faults after the 1992 Landers earthquake, Nature, 360, 251–254.Google Scholar
  86. Harris, R. A., and Simpson, R. W., 1996. In the shadow of 1857 - the effect of the great Ft. Tejon earthquake on subsequent earthquakes in southern California, Geophys. Res. Lett., 23, 229–232.Google Scholar
  87. Harris, R. A., Simpson, R. W., and Reasenberg, P. A., 1995. Infuence of static stress changes on earthquake locations in southern California, Nature, 375, 221–224.Google Scholar
  88. Hasegawa, H. S., and Kanamori, H., 1987. Source mechanism of the magnitude 7.2 Grand Banks earthquake of November 1929: double couple or submarine landslide?, Bull. Seism. Soc. Am., 77, 1984–2004.Google Scholar
  89. Haskell, N. A., 1964. Total energy and energy spectral density of elastic wave radiation from propagating faults, Bull. Seism. Soc. Am., 54, 1811–1841.Google Scholar
  90. Hast, N., 1969. The state of stress in the upper part of the Earth’s crust, Tectonophysics, 8, 169–211.Google Scholar
  91. Herrmann, H. J., and Roux, S. (eds.), 1990. Statistical Models for the Fracture of Disordered Media, North-Holland, Amsterdam.Google Scholar
  92. Hickman, S., Sibson, R., and Bruhn, R., 1995. Introduction to special section: mechanical involvement of fuids in faulting, J. Geophys. Res., 100, 12831–12840.Google Scholar
  93. Hobbs, B. E., Ord, A., and Teyssier, C., 1986. Earthquakes in the ductile regime?, Pure Appl. Geophys., 124, 309–336.Google Scholar
  94. Holland, T. H., 1900. The charnokite series, a group of Archean hypersthenic rocks in peninsular India, India Geological Survey Memoirs, 28, 119–249.Google Scholar
  95. Horii, H., and Nemat-Nasser, S., 1985. Compression induced microcrack growth in brittle solids: axial splitting and shear failure, J. Geophys. Res., 90, 3105–3125.Google Scholar
  96. Huc, M., and Main, I. G., 2003. Anomalous stress diffusion in earthquake triggering: correlation length, time-dependence, and directionality, J. Geophys. Res., 108(B7), 1–12, doi: 10.1029/2001JB001645.Google Scholar
  97. Hudnut, K. W., Seeber, L., and Pacheco, J., 1989. Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, southern California, Geophys. Res. Lett, 16, 199–202.Google Scholar
  98. Hutton, J., 1788. Theory of the Earth, Trans. Roy. Soc. Edinb., 1, 209–304 (reprinted 1973, Hafner, New York).Google Scholar
  99. Ide, S., and Takeo, M., 1997. Determination of constitutive relations of fault slip based on seismic wave analysis, J. Geophys. Res., 102, 27379–27391.Google Scholar
  100. Iio, Y., 1995. Observations of the slow initial phase generated by microearthquakes: implications for earthquake nucleation and propagation, J. Geophys. Res., 100, 15333–15349.Google Scholar
  101. Imamura, F., and Gica, E. C., 1996. Numerical model for tsunami generation due to subaqueous landslide along a coast, Sci. Tsunami Hazards, 14, 13–28.Google Scholar
  102. Ishimoto, M., and Iida, K., 1939. Observations of earthquakes registered with the microseismograph constructed recently, Bull. Earthq. Res. Inst. Tokyo Univ., 17, 443–478.Google Scholar
  103. Iwasaki, S., 1987. On the estimation of a tsunami generated by a submarine landslide, Proc. Int. Tsunami Symp., Vancouver, B.C., 134–138.Google Scholar
  104. Iwasaki, S., 1997. The wave forms and directivity of a tsunami generated by an earthquake and a landslide, Sci. Tsunami Hazards, 15, 23–40.Google Scholar
  105. Jackson, J. A., 1987. Glossary of Geology, 4th ed., American Geological Institute, Alexandria, Virginia.Google Scholar
  106. Jackson, J., and McKenzie, D., 1988. The relationship between plate motions and seismic moment tensors, and the active rates of deformation in the Mediterranean and Middle-East, Geophys. J. Int., 93, 45–73.Google Scholar
  107. Janosi, I. M. and Kertész, J., 1993. Self-organised criticality with and without conservation, Phys. Rev. A., 200, 179–188.Google Scholar
  108. Jaumé, S. C., and Sykes, L. R., 1992. Change in the state of stress on the southern San Andreas fault resulting form the California earthquake sequence of April to June 1992, Science, 258, 1325–1328.Google Scholar
  109. Jiang, L., and LeBlond, P. H., 1994. Three-dimensional modeling of tsunami generation due to a submarine mudslide, J. Phys. Oceanogr., 24, 559–573.Google Scholar
  110. Kagan, Y. Y., 1993. Statistics of characteristic earthquakes, Bull. Seism. Soc. Am., 83, 7–24.Google Scholar
  111. Kagan, Y. Y., 1997. Statistical aspects of Parkfield earthquake sequence and Parkfield prediction experiment, Tectonophysics, 270, 207–219.Google Scholar
  112. Kagan, Y. Y., 2002a. Seismic moment distribution revisited: I. Statistical results, Geophys. J. Int., 148, 520–541.Google Scholar
  113. Kagan, Y. Y., 2002b. Seismic moment distribution revisited: II. Moment conservation principle, Geophys. J. Int., 149, 731–754.Google Scholar
  114. Kagan, Y. Y., 2003. Accuracy of modern global earthquake catalogs, Phys. Earth Planet. Inter., 135, 173–209.Google Scholar
  115. Kagan, Y. Y., and Jackson, D. D., 1991. Seismic gap hypothesis – ten years after, J. Geophys. Res., 96, 21419–21431.Google Scholar
  116. Kagan, Y. Y., and Jackson, D. D., 1995. New seismic gap hypothesis - five years after, J. Geophys. Res., 100, 3943–3959.Google Scholar
  117. Kagan, Y. Y., and Jackson, D. D., 1996. Statistical tests of VAN earthquake predictions: comments and refections, Geophys. Res. Lett., 23, 1433–1436.Google Scholar
  118. Kagan, Y. Y., and Jackson, D. D., 1998. Spatial aftershock distribution: effects of normal stress, J. Geophys. Res., 103, 24453–24467.Google Scholar
  119. Kagan, Y. Y., and Jackson, D. D., 2000. Probabilistic forecasting of earthquakes, Geophys. J. Int., 143, 438–453.Google Scholar
  120. Kanamori, H., 1977. The energy release in great earthquakes, J. Geophys. Res., 82, 2981–2987.Google Scholar
  121. Kanamori, H., and Heaton, T. H., 2000. Microscopic and macroscopic physics of earthquakes, in Geocomplexity and the Physics of Earthquakes, Rundle, J. B., Turcotte, D.L., and Klein, W. (eds.), AGU Publ., Washington, 147–164.Google Scholar
  122. Kelleher, J., Sykes, L., and Oliver, J., 1973. Possible criteria for predicting earthquake locations and their application to major plate boundaries of Pacific and Caribbean, J. Geophys. Res., 78, 2547–2585.Google Scholar
  123. Kelleher, J., Savino, J., Rowlett, H., and McCann, W., 1974. Why and where great thrust earthquakes occur along island arcs, J. Geophys. Res., 79, 4889–4899.Google Scholar
  124. Keilis-Borok, V. I., 1959. On estimation of a displacement in an earthquake source and of source dimensions, Ann. Geofi s., 12, 205–214.Google Scholar
  125. Kikuchi, M., and Kanamori, H., 1991. Inversion of complex body waves - III, Bull. Seism. Soc. Am., 81, 2335–2350.Google Scholar
  126. King, G. C. P., Stein, R. S., and Lin, J., 1994. Static stress changes and the triggering of earthquakes, Bull. Seism. Soc. Am., 84, 935–953.Google Scholar
  127. Kiremidjian, A. S., and Anagnos, T., 1984. Stochastic slip-predictable model for earthquake occurrences, Bull. Seism. Soc. Am., 74, 739–755.Google Scholar
  128. Knopoff, L. and Kagan, Y. Y., 1977. Analysis of the theory of extremes as applied to earthquake problems, J. Geophys. Res., 82, 5647–5657.Google Scholar
  129. Kostrov, B. V., 1966. Unsteady propagation of longitudinal shear cracks, J. Appl. Math. Mech. (transi. P. M. M.), 30, 1241–1248.Google Scholar
  130. Kostrov, V. V., 1974. Seismic moment and the energy of earthquakes and seismic fbw of rock, Izv. Acad. Sci. USSR Phys. Solid Earth, 1, 23–44.Google Scholar
  131. Lachenbruch, A. H., 1980. Frictional heating, fuid pressure, and the resistance to fault motion, J. Geophys. Res., 85, 6097–6112.Google Scholar
  132. Lachenbruch, A. H., and Sass, J. H., 1992. Heat-fbw from Cajon Pass, fault strength, and tectonic implications, J. Geophys. Res., 97, 4995–5015.Google Scholar
  133. Landau, L. D., and Lifshitz, E. M., 1970. Theory of Elasticity, 2nd ed., Pergamon Press, Oxford.Google Scholar
  134. Lawn, B., 1993. Fracture of brittle solids, 2nd ed., Cambridge University Press, Cambridge.Google Scholar
  135. Lay, T., and Wallace, T. C., 1995. Modern Global Seismology, Academic Press, New York.Google Scholar
  136. Lee, J. C., Chen, Y. G., Sieh, K., Müller, K, Chen, W. S., Chu H. T., Chan, Y. C., Rubin, C, and Yeats, R., 2001. A vertical exposure of the 1999 surface rupture of the Chelungpu fault at Wufeng, western Taiwan: structural and paleoseismic implications for an active trust fault, Bull. Seism. Soc. Am., 91, 914–929.Google Scholar
  137. Lee, J., Spencer, J., and Owen, L., 2001. Holocene slip rates along the Owens Valley Fault, California: implications for the recent evolution of the Eastern California Shear Zone, Geology, 29, 819–822.Google Scholar
  138. Leonard, T., Papasouliotis, O., and Main, I. G., 2001. A Poisson model for identifying characteristic size effects in frequency data: application to frequency-size distributions for global earthquakes, ‘starquakes’ and fault lengths, J. Geophys. Res., 106, 13473–13484.Google Scholar
  139. Levret, A., Combes, P., and Granier, T., 1996. Seismicity and Archaeology: a Multidisciplinary Approach (in French), Colloque National AFPS, Saint Remy les Chevreuses (France).Google Scholar
  140. Lin, A., 1994. Glassy pseudotachylyte veins from the Fuyun fault zone, northwest China, J. Struct. Geol., 16,71–83.Google Scholar
  141. Lockner, D. A., and Okubo, P. G., 1983. Measurements of frictional heating in granite, J. Geophys. Res., 88, 4313–4320.Google Scholar
  142. Lyakhovsky, V, Ben-Zion, Y., and Agnon, A., 2001. Earthquake cycle, fault zone and seismicity patterns in a Theologically layered lithosphere, J. Geophys. Res., 106, 4103–4120.Google Scholar
  143. Maddock, R. H., 1983. Melt origin of fault-generated pseudotachylytes demonstrated by textures, Geology, 11, 105–108.Google Scholar
  144. Maddock, R. H., Grocott, J., and Van Nes, M., 1987. Vescicles, amygdales and similar structures in fault-generated pseudotachylytes, Lithos, 20, 419–432.Google Scholar
  145. Magloughlin, J. F., 1992. Microstructural and chemical changes associated with cataclasis and frictional melting at shallow crustal levels: the cataclasite-pseudotachylyte connection, Tectonophysics, 204, 243–260.Google Scholar
  146. Magloughlin, J. F., and Spray, J. G., 1992. Frictional melting processes and products in geological materials: introduction and discussion, Tectonophysics, 204, 197–206.Google Scholar
  147. Main, I. G., 1999. Applicability of time-to-failure analysis to accelerated strain before earthquakes and volcanic eruptions, Geophys. J. Int., 139, F1–F6.Google Scholar
  148. Main, I. G. and Burton, P. W., 1984. Information theory and the earthquake frequency-magnitude distribution, Bull. Seism. Soc. Am., 74, 1409–1426.Google Scholar
  149. Main, I. G., Sammonds, P. R., and Meredith, P. G., 1993. Application of a modified Griffith criterion to the evolution of fractal damage during compressional rock failure, Geophys. J. Int., 115, 367–380.Google Scholar
  150. Main, I., Mair, K., Kwon, O., Elphick., S., and Ngwenya, B., 2001. Experimental constraints on the mechanical and hydraulic properties of deformation bands in porous sandstones: a review, in The Nature and Signifi cance of Fault Zone Weakening, Holdsworth, R. E., Strachan, R. A., Magloughlin, J. F. and Knipe, R. J. (eds), Geol. Soc. Lond. Special Publications, 186, 43–63.Google Scholar
  151. Mair, K., and Marone, C., 2000. Shear heating in granular layers, Pure Appl. Geophys., 157, 1847–1866.Google Scholar
  152. Maruyama, T., 1963. On the force equivalents of dynamical elastic dislocations with reference to the earthquake mechanism, Bull. Earthq. Res. Inst. Tokyo Univ., 41, 467–486.Google Scholar
  153. Mase, C. W., and Smith, L., 1987. Effect of frictional heating on the thermal, hydrologic and mechanical response of a fault, J. Geophys. Res., 92, 6249–6272.Google Scholar
  154. Massonnet, D., and Feigl, K. L., 1998. Radar interferometry and its application to changes in the earth’s surface, Rev. Geophys., 36, 441–500.Google Scholar
  155. Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K. and Rabaute, T., 1993. The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138–142.Google Scholar
  156. Matsu’ura, M., and Hirata, N., 1982. Generalized least-squares solutions to quasi-linear problems with a priori information, J. Phys. Earth, 30, 451–468.Google Scholar
  157. Matsu’ura, M., Kataoka, H., and Shibazaki, B., 1992. Slip-dependent friction law and nucleation processes in earthquake rupture, Tectonophysics, 211, 135–148.Google Scholar
  158. McAdoo, B. G., Pratson, L. F., and Orange, D. L., 2000. Submarine landslide geomorphology, US continental slope, Mar. Geol., 169, 103–136.Google Scholar
  159. McCalpin, J. P., 1996. Paleoseismology, International Geophysics Series, Academic Press, San Diego.Google Scholar
  160. McCann, W. R., Nishenko, S., Sykes, L. R., and Krause, J., 1979. Seismic gaps and plate tectonics: seismic potential for major boundaries, Pure Appl. Geophys., 117, 1082–1147.Google Scholar
  161. McGarr, A., and Gay, N. C., 1978. State of stress in the earth’s crust, Ann. Rev. Earth Planet. Sci., 6, 405–436.Google Scholar
  162. McKenzie, D., and Brune, J. N., 1972. Melting on Fault Planes During Large Earthquakes, Geophys. J. Roy. Astr. Soc., 29, 65–78.Google Scholar
  163. Meghraoui, M., and Crone, A. J., 2001. Earthquakes and their preservation in the geological record, J. Seism., 5, 281–285.Google Scholar
  164. Melosh J., 1996. Dynamic weakening of faults by acoustic fuidization, Nature, 397, 601–606.Google Scholar
  165. Michetti, A. M., and Hancock, P. L., 1997. Paleoseismology: understanding past earthquakes using quaternary geology, J. Geodynamics, 24, 3–10.Google Scholar
  166. Miller, S. A., Ben-Zion, Y., and Burg, J. P., 1999. A three-dimensional fuid-controlled fault model: behavior and implications, J. Geophys. Res., 104, 10621–10638.Google Scholar
  167. Mora, P., Place, D., Abe, S., and Jaumé, S., 2000. Lattice solid simulation of the Physics of fault zones and earthquakes: the model, results, and directions, in Geocomplexity and the Physics of Earthquakes, Rundle, J. B., Turcotte, D. L., and Klein, W. (eds.), AGU Publ, Washington, 105–126.Google Scholar
  168. Morgan, J. K., and Btötcher, M. S., 1999. Numerical simulations of granular shear zones using the distinct element method - 1. Shear zone kinematics and the microme chanics of localization, J. Geophys. Res., 104, 2703–2719.Google Scholar
  169. Morgestern, N., 1967. Submarine slumping and the initiation of turbidity currents, Proc. Int. Res. Conf. Marine Geotechnique, Univ. Illinois Press, Urbana-Champaign.Google Scholar
  170. Mori, J., and Kanamori, H., 1996. Initial rupture of earthquakes in the 1995 Ridgecrest, California sequence, Geophys. Res. Lett, 23, 2437–2440.Google Scholar
  171. Morrow, C. A., Shi, L. Q., and Byerlee, J. D., 1981. Permeability and strength of San Andreas fault gouge under high pressure, Geophys. Res. Lett, 8, 325–328.Google Scholar
  172. Morrow, C. A., Shi, L. Q., and Byerlee, J. D., 1984. Permeability and strength of San Andreas fault gouge under confining pressure and shear stress, J. Geophys. Res., 89, 3193–3200.Google Scholar
  173. Mulargia, F., 2000. An Introduction to the Mechanics of Faulting (in Italian), CLUEB, Bologna.Google Scholar
  174. Mulargia, F., and Gasperini, P., 1995. Evaluation of the applicability of the time- and slippredictable earthquake recurrence models to Italian seismicity, Geophys. J. Int., 120, 453–473.Google Scholar
  175. Mulargia, F., Castellaro, S., and Ciccotti, M., Earthquake energy balance, Geophys. J. Int., in press, 2003.Google Scholar
  176. Murty, T. S., 1979. Submarine slide-generated water waves in Kitimat Inlet, British Columbia., J. Geophys. Res., 84, 7777–7779.Google Scholar
  177. Nalbant, S. S., Hubert, A., and King, G. C. P., 1998. Stress coupling between earthquakes in Northwest Turkey and the North Aegean Sea, J. Geophys. Res., 103, 24469–24486.Google Scholar
  178. Nishenko, S. P., 1985. Seismic potential for large and great interplate earthquakes along the Chilean and southern Peruvian margins of South America: a quantitative reappraisal, J. Geophys. Res., 90, 3589–3615.Google Scholar
  179. Nishenko, S. P., 1991. Circum–Pacific seismic potential – 1989–1999, Pure Appl. Geophys., 135, 169–259.Google Scholar
  180. O’Hara, K. D., 2001. A pseudotachylyte geothermometer, J. Struct. Geol., 23, 1345–1357.Google Scholar
  181. O’Hara, K. D., and Sharp, Z. D., 2001. Chemical and oxygen isotope composition of natural and artificial pseudotachylyte: role of water during frictional melting, Earth Planet. Sci. Lett, 184, 394–406.Google Scholar
  182. Ohnaka, M., 1990. Nonuniformity of crack-growth resistance and breakdown zone near the propagating tip of a shear crack in brittle rock: a model for earthquake nucleation to dynamic rupture, Can. J. Phys., 68, 1071–1083.Google Scholar
  183. Ohnaka, M., 1992. Earthquake source nucleation: a physical model for short-term precursors, Tectonophysics, 211, 149–178.Google Scholar
  184. Ohnaka, M., and Kuwahara, Y., 1990. Characteristic features of local breakdown near a crack-tip in the transition zone from nucleation to unstable rupture during stick-slip shear failure, Tectonophysics, 175, 197–220.Google Scholar
  185. Ohnaka, M., and Yamashita, T., 1989. A cohesive zone model for dynamic shear faulting based on experimentally-inferred constitutive relation and strong motion source parameters, J. Geophys. Res., 94, 4089–4104.Google Scholar
  186. Ohtani, T., Fujimoto, K., Ito H., Tanaka, H., Tomida, N., and Higuchi, T., 2000. Fault rocks and past to recent fLiid characteristics from the borehole survey of the Nojima fault ruptured in the 1995 Kobe earthquake, southwest Japan, J. Geophys. Res., 105,16161–16171.Google Scholar
  187. Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 75, 1135–1154.Google Scholar
  188. Okada, Y., 1992. Internal deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 82, 1018–1040.Google Scholar
  189. Okubo, P., 1989. Dynamic rupture modeling with laboratory-derived constitutive relations, J. Geophys. Res., 98, 12321–12335.Google Scholar
  190. Okumura, K., 2001. Paleoseismology of the Itoigawa-Shizuoka tectonic line in central Japan, J. Seismol. 5, 411–431.Google Scholar
  191. O’Leary, D. W., 1993. Submarine mass movement, a formulative process of passive continental margins: the Munson-Nygren landslide complex and the southeast New England landslide complex. In Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone, Schwab, W. C., Lee, H. J., and Twichell, D. C. (eds.), U.S. Geol. Surv. Bull., 2002, 23–39.Google Scholar
  192. Olson, S. M., and Stark, T. D., 2002. Liquefied strength ratio from liquefaction fbw failure case histories, Can. Geotech. J., 39, 629–647.Google Scholar
  193. Oskin, M., Sieh, K., Rockwell, T., Miller, G., Guptill, P., Curtis, M., McArdle, S., and Elliot, P., 2000. Active parasitic folds on the Elysian Park anticline: implications for seismic hazard in central Los Angeles, California, Geol. Soc. Am. Bull., 112, 693–707.Google Scholar
  194. Ozkan, G., and Ortoleva, P. J., 2000. Evolution of the gouge particle size distribution: a Markov model, Pure Appl. Geophys., 157, 449–468.Google Scholar
  195. Papazachos, B. C., 1989. A time-predictable model for earthquake occurrence in Greece, Bull. Seism. Soc. Amer., 79, 77–84.Google Scholar
  196. Parsons, T., Toda, S., Stein, R. S., Barka, A., and Dieterich, J. H., 2000. Heightened odds of large earthquakes near Istanbul: an interaction-based probability calculation, Science, 288, 661–665.Google Scholar
  197. Passchier, C. W., 1982. Pseudotachylyte and the development of ultramylonite bands in the Saint-Barth`ele`emy Massif, French Pyrenees, J. Struct. Geol, 4, 69–79.Google Scholar
  198. Philpotts, A. R., 1964. Origin of pseudotachylytes, Am. J. Science, 262, 1008–1035.Google Scholar
  199. Place, D., and Mora, P., 2000. Numerical simulation of localisation phenomena in a fault zone, Pure Appl. Geophys., 157, 1821–1845.Google Scholar
  200. Postpischl, D., Agostini, S., Forti, P., and Quinif, Y., 1991. Paleoseismicity from karst sediments: “Grotta del Cervo”cave case study (central Italy), Tectonophysics, 193, 33–44.Google Scholar
  201. Poty, B., Menager, M., and Roth, E., 1990. Nuclear Methods of Dating, Roth, E., and Poty, B. (eds.), vol. 5, Solid Earth Sciences Library, Kluwer, Dordrecht.Google Scholar
  202. Prior, D. B., and Coleman, J. M., 1979. Submarine landslides: geometry and nomenclature, Z. Geomorph. N. F., 23, 415–426.Google Scholar
  203. Rabinowicz, E., 1965. Friction and Wear of Materials, John Wiley, New York.Google Scholar
  204. Ramsey, J. G., and Huber, M. I., 1983. The Techniques of Modern Structural Geology, Academic Press, Harcourt Brace Jovanivich Publishers, New York.Google Scholar
  205. Reasenberg, P. A., and Simpson, R.W., 1992. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake, Science, 255, 1687–1690.Google Scholar
  206. Reid, H. F., 1910. The California Earthquake of April 18, 1906, vol. 2: The Mechanics of the Earthquake, Carnegie Institution of Washington, Washington, D.C.Google Scholar
  207. Reiter, L., 1990. Earthquake Hazard Analysis, Columbia University Press, New York.Google Scholar
  208. Rice, J. R., 1993. Spatio-temporal complexity of slip on a fault, J. Geophys. Res., 98, 9885–9907.Google Scholar
  209. Roder, J., Bishop A. R., Holian B. L., Hammerberg J. E., and Mikulla R. P., 2000. Dry friction: modeling and energy flow, Physica D, 142, 306–316.Google Scholar
  210. Roder, J., Hammerberg J. E., Holian B. L., and Bishop A. R., 1998. Multichain Frenkel-Kontorova model for interfacial slip, Phys. Rev. B, 57, 2759–2766.Google Scholar
  211. Roeloffs, E., and Langbein, J., 1994. The earthquake prediction experiment at Parkfield, California, Rev. Geophys., 32, 315–336.Google Scholar
  212. Rudnicki, J. W., 1988. Physical models of earthquake instability and the precursory process, Pure Appl. Geophys., 126, 531–554.Google Scholar
  213. Rudnicki, J. W., and Chen, C.-H., 1988. Stabilization of rapid frictional slip on a weakened fault by dilatant hardening, J. Geophys. Res., 93, 4745–4757.Google Scholar
  214. Ruina, A. L., 1983. Slip instability and state variable friction laws, J. Geophys. Res., 88,10359–10370.Google Scholar
  215. Rundle, J. B., 1989. Derivation of the complete Gutenberg-Richter magnitude frequency relation using the principle of scale invariance, J. Geophys. Res., 94, 12337–12342.Google Scholar
  216. Rundle, J., Preston, E.,McGinnis, S., and Klein,W., 1998. Why earthquakes stop: growth and arrest in stochastic fields, Phys. Rev. Lett., 80, 5698–5701.Google Scholar
  217. Rydelek, P. A., Davis, P. M., and Koyanagi, R., 1988. Tidal triggering of earthquake swarms at Kilauea volcano, J. Geophys. Res., 93, 4401–4411.Google Scholar
  218. Sammis, C. G., Osborne, R., Anderson, J., Banerdt, M. and White, P., 1986. Self-similar cataclasis in the formation of fault gouge, Pure Appl. Geophys., 124, 53–78.Google Scholar
  219. Savage, J. C., 1991. Criticism of some forecasts of the national earthquake prediction evaluation council, Bull. Seism. Soc. Am., 81, 862–881.Google Scholar
  220. Savage, J. C., 1993. The Parkfield prediction fallacy, Bull. Seism. Soc. Am., 83, 1–6.Google Scholar
  221. Scherbaum, F., and Bouin, M. P., 1997. FIR filter effects and nucleation phases, Geophys. J. Int., 130, 661–668.Google Scholar
  222. Scholz, C. H., 1968. Microfracturing and the inelastic deformation of rock in compression, J. Geophys. Res., 73, 1417–1432.Google Scholar
  223. Scholz, C. H., 1990. The Mechanics of Earthquakes and Faulting, Cambridge University press, Cambridge.Google Scholar
  224. Scholz, C. H., 1998. Earthquakes and friction laws, Nature, 391, 37–42.Google Scholar
  225. Scholz, C. H., Sykes, L. R., and Aggarwal, Y. P., 1973. Earthquake prediction – a physical basis, Science, 181, 803–810.Google Scholar
  226. Schwab, W. C., Lee, H. J., and Twichell, D. C., 1993. Submarine landslides: selected studies in the U.S. exclusive economic zone, U.S. Geol. Surv. Bull. 2002, U.S., Dept. of Interior, Washington, DC.Google Scholar
  227. Schwartz, D. P., and Coppersmith, K. J., 1984. Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault, J. Geophys. Res., 89, 5681–5698.Google Scholar
  228. Segall, P., 1992. Induced stresses due to fluid extraction from axisymmetrical reservoirs, Pure Appl. Geophys., 139, 535–560.Google Scholar
  229. Seismotectonic Atlas of India and its environs, 2000. Map & Cartography Division, Geological Survey of India, Calcutta, India.Google Scholar
  230. Shand, S. J., 1916. The pseudotachylyte of Parjis (Orange Free State), J. Geol. Soceh. London, 72, 198–221.Google Scholar
  231. Shen, P. Y., and Mansinha, L., 1983. On the principle of maximum entropy and the earthquake frequency-magnitude relation, Geophys. J. Roy. Astr. Soc., 74, 777–785.Google Scholar
  232. Shimamoto, T., and Nagahama, H., 1992. An argument against the crush origin of pseudotachylytes based on the analysis of clast size distribution, J. Struct. Geol., 14, 999–1006.Google Scholar
  233. Shimazaki, K., and Nakata, T., 1980. Time-predictable recurrence model for large earthquakes, Geophys. Res. Lett., 7, 279–282.Google Scholar
  234. Sibson, R. H., 1973. Interactions between temperature and pore fluid pressure during earthquake faulting - a mechanism for partial or total stress relief, Nature Phys. Sci., 243, 66–68.Google Scholar
  235. Sibson, R. H., 1975. Generation of pseudotachylyte by ancient seismic faulting, Geophys. J. Roy. Astron. Soc., 43, 775–794.Google Scholar
  236. Sibson, R. H., 1977. Kinetic shear resistance, fluid pressures and radiation efficiency during seismic faulting, Pure Appl. Geophys., 115, 387–400.Google Scholar
  237. Sibson, R. H., 1980. Transient discontinuities in ductile shear zones, J. Struct. Geol., 2, 165–168.Google Scholar
  238. Sibson, R. H., 1992. Power dissipation and stress levels on faults in the upper crust, J. Geophys. Res., 85, 6239–6247.Google Scholar
  239. Sieh, K., 1978. Prehistoric large earthquakes produced by slip on the San Andreas Fault at Pallet Creek, Southern California, J. Geophys. Res., 83, 3907–3939.Google Scholar
  240. Sieh, K., 1984. Lateral offsets and revised dates of large prehistoric earthquakes at Pallet Creek, southern California, J. Geophys. Res., 89, 7641–7670.Google Scholar
  241. Sieh, K., and Natawidjaja, D., 2000. Neotectonics of the Sumatran fault, Indonesia, J. Geophys. Res. 105, 28295–28326.Google Scholar
  242. Sieh, K., Stuiver, M., and Brillinger, D., 1989. A more precise chronology of earthquakes produced by the San Andreas fault in southern California, J. Geophys. Res., 94, 603–623.Google Scholar
  243. Sieh, K., Ward, S. N., Natawidjaja, D., and Suwargadi, B. W., 1999. Crustal deformation at the Sumatran subduction zone revealed by coral rings, Geophys. Res. Lett., 26, 3141–3144.Google Scholar
  244. Simpson, R. W., and Reasenberg, P. A., 1994. Earthquake-induced static stress changes on central California faults, in The Loma Prieta, California earthquake of October 17, 1989 - Tectonic Processes and Models, Simpson, R. W. (ed.), U.S. Geol. Surv. Prof. Pap., 1550-F, F55–F89.Google Scholar
  245. Sleep, N. H., Richardson E., and Marone C., 2000. Physics of friction and strain rate localization in synthetic fault gouge, J. Geophys. Res., 105, 25875–25890.Google Scholar
  246. Spray, J. G., 1987. Artificial generation of pseudotachylyte using friction welding apparatus: simulation of melting on a fault plane, J. Struct. Geol., 9, 49–60.Google Scholar
  247. Spray, J. G., 1992. A physical basis for the the frictional melting of some rock forming minerals, Tectonophysics, 204, 205–221.Google Scholar
  248. Spray, J. G., 1995. Pseudotachylyte controversy: fact or friction?, Geology, 23, 1119–1122.Google Scholar
  249. Stauffer, D., and Aharony, A., 1994. Introduction to Percolation Theory, 2nd ed., Taylor & Francis, Philadelphia.Google Scholar
  250. Steacy, S. J., and McCloskey, J. J., 1998. What controls an earthquake’s size? Results from a heterogeneous cellular automaton, Geophys. J. Int., 133, F11–F14.Google Scholar
  251. Stein, R. S., 1999. The role of stress transfer in earthquake occurrence,Nature, 402, 605–609.Google Scholar
  252. Stein, R. S., and Lisowski, M., 1983. The 1979 Homestead Valley earthquake sequence, California: control of aftershocks and postseismic deformation, J. Geophys. Res., 88, 6477–6490.Google Scholar
  253. Stein, R. S., King, G. C. P., and Lin, J., 1992. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude = 7.4 Landers earthquake, Science, 258, 1328–1332.Google Scholar
  254. Stein, R. S., King, G. C. P., and Lin, J., 1994. Stress triggering of the 1994 M = 6.7 Northridge, California, earthquake by its predecessors, Science,265, 1432–1435.Google Scholar
  255. Stiros, S., and Jones, R. E., 1996. Archaeoseismology, Fitch Lab. Occas. Pap. 7, British School at Athens and Inst. Geol. Min. Explor, Oxbow Books, Oxford, UK.Google Scholar
  256. Swanson, M. T., 1992. Fault structure, wear mechanism and rupture processes in pseudotachylyte generation, Tectonophysics, 204, 223–242.Google Scholar
  257. Sykes, L. R., and Quittmeyer, R. C., 1981. Repeat times of great earthquakes along simple plate boundaries, in Earthquake Prediction: an International Review, Maurice Ewing Ser., 4, Simpson, D. W., and Richards, P. G. (eds.), Am. Geophys. Un., Washington, D. C, 217–247.Google Scholar
  258. Sykes, L. R., Shaw, B. E., and Scholz, C. H., 1999. Rethinking earthquake prediction, Pure Appl. Geophys., 155, 207–232.Google Scholar
  259. Tappin, D. R., Watts, P., McMurtry, G. M., Lafoy, Y., and Matsumoto, T., 2001. The Sissano, Papua New Guinea Tsunami of July 1998. – Offshore Evidence on the Source Mechanism, Mar. Geol., 175, 1–23.Google Scholar
  260. Thatcher, W., 1989. Earthquake recurrence and risk assessment in circum-Pacific seismic gaps, Nature, 341, 432–434.Google Scholar
  261. Thatcher, W., 1990. Order and diversity in the modes of circum-Pacific earthquake recurrence, J. Geophys. Res., 95, 2609–2623.Google Scholar
  262. Thatcher, W., Marshall, G., and Lisowski, M., 1997. Resolution of fault slip along the 470-km-long rupture of the great 1906 San Francisco earthquake and its implications, J. Geophys. Res., 102, 5353–5367.Google Scholar
  263. Toda, S., Stein, R. S., and Sagiya, T., 2002. Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity, Nature, 419, 58–61.Google Scholar
  264. Toyoshima, T., 1990. Pseudotachylyte from the main zone of the Hidaka metamorphic belt, Hokkaido, northern Japan, J. Metamorph. Geol., 8, 507–523.Google Scholar
  265. Trifunac, M. D., and Todorovska, M. I., 2002. A note on differences in tsunami source parameters for submarine slides and earthquakes, Soil Dynamics and Earthquake Engineering, 22, 143–155.Google Scholar
  266. Troise, C., De Natale, G., Pingue, F., and Petrazzuoli, S. M., 1998. Evidence for static stress interaction among earthquakes in the south-central Apennines (Italy), Geophys. J. Int., 134, 809.Google Scholar
  267. Tsukahara, H., Ikeda, R., and Omura, K., 1996. In-situ stress measurement in an earthquake focal area, Tectonophysics, 262, 281–290.Google Scholar
  268. Tsutsumi, A., and Shimamoto, T., 1997. High-velocity frictional properties of gabbro, Geophys. Res. Lett., 24, 699–702.Google Scholar
  269. Turcotte, D. L., 1991. Earthquake prediction, Ann. Rev. Earth Planet. Sci., 19, 263–281.Google Scholar
  270. Twiss, R. J., and Moores, E. M. (eds.), 1992. Structural Geology, W. H. Freeman, New York.Google Scholar
  271. Utsu, T., 1999. Representation and analysis of the earthquake size distribution: a historical review and some new approaches, Pure Appl. Geophys., 155, 509–535.Google Scholar
  272. Valensise, G., and Pantosti, D., 2001. The investigation of potential earthquake sources in peninsular Italy: a review, J. Seismol., 5, 287–306.Google Scholar
  273. Vere-Jones, D., Robinson, R. and Yang, W. Z., 2001. Remarks on the accelerated moment release model: problems of model formulation, simulation and estimation, Geophys. J. Int., 144, 517–531.Google Scholar
  274. Vidale, J., Agnew, D., Johnston, M., and Oppenheimer, D., 1998. Absence of earthquake correlation with earth tides: an indication of of high preseismic fault stress rate, J. Geophys. Res., 103, 24567–24572.Google Scholar
  275. Walker, D. A., and Bernard, E. N., 1993. Comparison of T-phase spectra and tsunami amplitudes for tsunamigenic and other earthquakes, J. Geophys. Res., 98, 12557–12565.Google Scholar
  276. Watts, P., 1998. Wavemaker curves for tsunamis generated by underwater landslides, J. Wtrwy, Port, Coast, and Oc. Engrg., ASCE, 124, 127–137.Google Scholar
  277. Watts, P., 2000. Tsunami features of solid block underwater landslides, J. Wtrwy, Port, Coast, and Oc. Engrg., ASCE, 126, 144–152.Google Scholar
  278. Wenk, H. R., 1978. Are pseudotachylytes products of fracture or fusion?, Geology, 6, 507–511.Google Scholar
  279. Wenk, H. R., Johnson, L. R., and Ratschbacher, L., 2000. Pseudotachylytes in the Eastern Peninsular Ranges of California, Tectonophysics, 321, 253–277.Google Scholar
  280. Wesnousky, S. G., 1996. Reply to Yan Y. Kagan’s comment on the Gutenberg-Richter or characteristic earthquake distribution, which is it?, Bull. Seism. Soc. Am., 86, 286–291.Google Scholar
  281. White, J. C., 1996. Transient discontinuities revisited: pseudotachylyte, plastic instability and the influence of low pore fluid pressure on the deformation processes in the mid-crust, J. Struct. Geol., 18, 1471–1486.Google Scholar
  282. Wiemer, S., and Wyss, M., 2002. Mapping spatial variability of the frequency-magnitude distribution of earthquakes, Adv. Geophys., 45, 259–302.Google Scholar
  283. Wyss, M. (ed.), 1977. Stress in the Earth, Contrib. Cur. Res. Geophys., reprinted from Pure Appl. Geophys., Birkhäser, Basel.Google Scholar
  284. Yeats, R., Sieh, K., and Allen, C. (eds.), 1997. The Geology of Earthquakes, Oxford University Press, Oxford.Google Scholar
  285. Yoshioka, N., 1986. Fracture energy and the variation of gouge and surface roughness during frictional sliding of rocks, J. Phys. Earth, 34, 335–355.Google Scholar
  286. Zachariasen, J., Sieh, K., Taylor, F. W., and Hantoro, W. S., 2000. Modern vertical deformation above the Sumatran subduction zone: paleogeodetic insights from coral microatolls, Bull. Seism. Soc. Am., 90, 897–913.Google Scholar
  287. Zoback, M. D., and Harjes, H. P., 1997. Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany, J. Geophys. Res., 102, 18477–18491.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  1. 1.Università degli Studi di BolognaItaly
  2. 2.University of TokyoJapan

Personalised recommendations