Advertisement

Multivariate Chemical Data Assimilation

  • Boris Khattatov
Conference paper
Part of the NATO Science Series book series (NAIV, volume 26)

Abstract

We present an overview of the mathematical formalism of data assimilation applied to photochemical atmospheric models. Examples of Kaiman filter and variational assimilation analysis are presented along with time-dependent linearization and error covariance matrices for a typical stratospheric chemical system described in the Chapter Introduction to Atmospheric Photochemical Modelling.

Keywords

Probability Density Function Kalman Filter Data Assimilation Extended Kalman Filter Adjoint Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fisher, M., and Lary, D. J., 1995: Lagrangian four dimensional variational data assimilation of chemical species. Q. J. R. Meteorol. Soc., 121, 1681–1704.CrossRefGoogle Scholar
  2. Khattatov, B. V., Gille, J. C., Lyjak, L. V., Brasseur, G. P., Dvortsov, V. L., Roche, A. E., and Waters, J., 1999: Assimilation of photochemically active species and a case analysis of UARS data. J. Geophys. Res., 104, 18,715–18,737.CrossRefGoogle Scholar
  3. Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory, Academic Press.Google Scholar
  4. Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc., 112, 1177–1194.CrossRefGoogle Scholar
  5. Talagrand, O., and Courtier, P., 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Q. J. R. Meteorol. Soc., 113, 1311–1328.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Boris Khattatov
    • 1
  1. 1.Atmospheric Chemistry DivisionNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations