Advertisement

Ozone Assimilation

  • Richard B. Rood
Conference paper
Part of the NATO Science Series book series (NAIV, volume 26)

Abstract

This chapter discusses the assimilation of atmospheric ozone, or more generally, the assimilation of trace constituents into a model that explicitly represents atmospheric transport and chemistry. The chemical production and loss terms will be parametrized using methods similar to those described in (1985). To derive this parametrization, the constituent being assimilated is assumed to be in near equilibrium with the environmental conditions. Perturbations from that chemical equilibrium, caused by transport or temperature dependent chemistry, return to equilibrium with calculated time constants. The time constants vary from many months to a few minutes as a function of season, altitude, and latitude. Besides ozone, the techniques discussed here are directly applicable to satellite measurements of, for instance, nitrous oxide, methane, carbon monoxide, the chlorofluoromethanes, and water vapour. Assimilation of reactive constituents whose concentrations are dependent on the concentration of other constituents, i.e. “full chemistry,” is discussed in the chapters Introduction to Atmospheric Photochemical Modelling and Multivariate Chemical Data Assimilation. A list of reading material that serves as an introduction to the discipline is given at the end.

Keywords

Data Assimilation Total Ozone Tropospheric Ozone Total Column Ozone Assimilation Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhartia, P.K., R.D. McPeters, C. L. Mateer, L.E. Flynn, and C. Wellemeyer, 1996: Algorithm for the estimation of vertical ozone profile from the backscattered ultraviolet (BUV) technique. J. Geophys. Res., 101, 18793–18806.CrossRefGoogle Scholar
  2. Bruhl, C., S. R. Drayson, J. M. Russell III, P. J. Crutzen, J. M. Mclnerney, P. N. Purcell, H. Claude, H. Gernandt, T. J. McGee, I. S. McDermid, and M. R. Gunson, 1996: Halogen Occultation Experiment ozone channel validation. J. Geophys. Res., 101, 10217–10240.CrossRefGoogle Scholar
  3. Cohn, S. E., A. M. da Silva, J. Guo, M. Sienkiewicz, and D. Lamich, 1998: Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Weather Rev., 126, 2913–2926.CrossRefGoogle Scholar
  4. Dessler, A. E., 2000: The Chemistry and Physics of Stratospheric Ozone, Academic Press.Google Scholar
  5. Eskes, H. J., P. F. J. van Velthoven, and H. M. Kelder, 2002: Global ozone forecasting based on ERS-2 GOME observations, Atmos. Chem Phys., 2, 271–278.CrossRefGoogle Scholar
  6. Hobbs, P. V., 2000: Introduction to Atmospheric Chemistry, Cambridge University Press.Google Scholar
  7. Jackman C. H., P. D. Guthrie, J. A. Kaye, 1987: An intercomparison of nitrogen-containing species in Nimbus 7 LIMS and SAMS data. J. Geophys. Res., 92, 995–1008.CrossRefGoogle Scholar
  8. Long, C. S., A. J. Miller, H. T. Lee, J. D. Wild, R. C. Przywarty, and D. Hufford, 1996: Ultraviolet index forecasts issued by the National Weather Service. Bull. Amer. Meteorol. Soc., 77, 729–748.CrossRefGoogle Scholar
  9. McPeters, R. D., P. K. Bhartia, A. J. Kruger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, 1996: Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data products users guide, NASA Reference Publication 1384, National Aeronautical and Space Administration, Washington, D.C., U.S.A.Google Scholar
  10. Štaĵner, I., L. P. Riishøjgaard, and R. B. Rood, 2001: The GEOS ozone data assimilation system: Specification of error statistics. Q. J. R. Meteorol. Soc., 127, 1069–1094.CrossRefGoogle Scholar
  11. Stolarski, R. S., and A. R. Douglass, 1985: Parameterization of the photochemistry of stratospheric ozone including catalytic loss processes. J. Geophys. Res., 90, 709–718.CrossRefGoogle Scholar

Suggested Reading

  1. Austin, J., 1992: Toward the four dimensional assimilation of stratospheric constituents. J. Geophys. Res., 97, 2569–2588.CrossRefGoogle Scholar
  2. Eskes, H. J., P. F. J. van Velthoven, P. J. M. Valks, and H. M. Kelder, 2003: Assimilation of GOME total ozone satellite observations in a three-dimensional tracer transport model. Q. J. R. Meteorol. Soc., 129, in press.Google Scholar
  3. Fisher, M., and D. J. Lary, 1995: Lagrangian four-dimensional variational assimilation of chemical species. Q. J. R. Meteorol. Soc., 125, 723–757.Google Scholar
  4. Khattatov, B. V., J. C. Gille, L. V. Lyjak, G. P. Brasseur, V. L. Dvortsov, A. E. Roche, and J. W. Waters, 1999: Assimilation of photochemically active species and a case analysis of UARS data. J. Geophys. Res., 104, 18715–18737.CrossRefGoogle Scholar
  5. Kondratyev, K. Ya, A. A. Buznikov, O. M. Pokrovskii, and Yu. B. Yanushanets, 1993: Methods of assimilating satellite information for analysis and prediction of atmospheric ozone, Soviet J. Remote Sensing, 10(3), 407–420.Google Scholar
  6. Levelt, P. F., M. A. F. Allaart, and H. M. Kelder, 1996: On assimilation of total ozone satellite data. Ann. Geophys., 14, 1111–1118.Google Scholar
  7. Levelt, P. F., B. V. Khattatov, J. C. Gille, G. P. Brasseur, X. X. Tie, and J. W. Waters, 1998: Assimilation of MLS ozone measurements in the global three-dimensional chemistry transport model ROSE. Geophys. Res. Lett., 25, 4493–4496.CrossRefGoogle Scholar
  8. Lyster, P. M., S. E. Cohn, R. Ménard, L.-P. Chang, S.-J. Lin, and R. G. Olsen, 1997: Parallel implementation of a Kaiman filter for constituent data assimilation. Mon. Weather Rev., 125, 1674–1686.CrossRefGoogle Scholar
  9. Ménard, R. and L.-P. Chang, 2000: Assimilation of stratospheric chemical tracer observations using a Kaiman filter. Part II: Validation results and analysis of variance and correlation dynamics. Mon. Weather Rev., 128, 2672–2686.CrossRefGoogle Scholar
  10. Ménard, R., S. E. Cohn, L.-P. Chang, and P. M. Lyster, 2000: Assimilation of stratospheric chemical tracer observations using a Kaiman filter. Part I: Formulation. Mon. Weather Rev., 128, 2654–2671.CrossRefGoogle Scholar
  11. Riishøjgaard, L. P., I. Štaĵner, and G.-P. Lou, 2000: The GEOS ozone data assimilation system. Adv. Space. Res., 25, 1063–1072.CrossRefGoogle Scholar
  12. Struthers, H., R. Brugge, W. A. Lahoz, A. O’Neill, and R. Swinbank, 2002: Assimilation of ozone profiles and total column measurements into a global General Circulation Model. J. Geophys. Res., 107, 10.1029/2001JD000957.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Richard B. Rood
    • 1
  1. 1.NASA/Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations