• R. Swinbank
Conference paper
Part of the NATO Science Series book series (NAIV, volume 26)


Over recent decades there have been an extraordinary advances across many earth science disciplines, thanks to better observations and understanding of the earth system. This is nowhere better illustrated than in meteorology, where the skill of the three-day forecast now is similar to the skill of a one-day prediction about twenty years ago. Despite these advances there are continuing requirements for improvements; for example, a one-day forecast still cannot give us good enough quantitative rainfall predictions. While major developments have taken place, there are still many advances which need to be made over the coming decades.


Data Assimilation Numerical Weather Prediction Background Field Data Assimilation System Background Error Covariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergthorsson, P. and B. Döös, 1955: Numerical weather map analysis, Tellus, 7, 329–340.CrossRefGoogle Scholar
  2. Charney, J., R. Fjortoft and J. von Neumann, 1950: Numerical integration of the barotropic vorticity equation, Tellus, 2, 237–254.CrossRefGoogle Scholar
  3. Conn, S.E., A. da Silva, J. Guo, M. Sienkiewicz and D. Lamich, 1998: Assessing the effects of data selection with the DAO Physical-space Statistical Analysis System, Mon. Weather Rev., 126, 2912–2926.Google Scholar
  4. Courtier P, E. Andersson, W. Heckley, J. Pailleux, D. Vasiljevic, M. Hamrud, A. Hollingsworth, F. Rabier and M. Fisher, 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. R. Meteorol. Soc., 124, 1783–1807.Google Scholar
  5. Courtier, P., J.N. Thepaut and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach, Quart. J. R. Meteorol. Soc., 120, 1389–1408.CrossRefGoogle Scholar
  6. Cressman, G., 1959: An operational objective analysis system, Mon Wea. Rev., 87, 367–374.CrossRefGoogle Scholar
  7. Daley, R., 1991: Atmospheric Data Analysis, Cambridge University Press, Cambridge, 457pp.Google Scholar
  8. Gandin, L., 1963: Objective analysis of meteorological fields, Gridromet, Leningrad. (English translation Israel Program for Scientific Translation, Jerusalem, 1965).Google Scholar
  9. Gilchrist, B. and G. Cressman, 1954: An experiment in objective analysis, Tellus, 6, 309–318.CrossRefGoogle Scholar
  10. Ide, K., Courtier, P., Ghil, M., and Lorenc, A.C., 1997: Unified notation for data assimilation: Operational, sequential and variational. J. Met. Soc. Japan, 75, 181–189.Google Scholar
  11. Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictibility, Cambridge University Press, Cambridge, 341pp.Google Scholar
  12. Le Dimet, F.-X. and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical Aspects. Tellus, 38A, 97–110.CrossRefGoogle Scholar
  13. Lorenc, A.C., 1981: A global three-dimensional multivariate statistical analysis scheme, Mon. Wea. Rev., 109, 701–721.CrossRefGoogle Scholar
  14. Lorenc, A.C., 1986: Analysis methods for numerical weather prediction, Quart. J. R. Meteorol. Soc., 111, 1177–1194.CrossRefGoogle Scholar
  15. Lorenc, A.C., R.S. Bell and B. Macpherson, 1991: The Meteorological Office Analysis Correction Data Assimilation scheme, Quart. J. R. Meteorol. Soc., 117, 59–89.CrossRefGoogle Scholar
  16. Lynch, P., 2001: Weather Forecasting from woolly art to solid science, Meteorology at the Millenium, 106–119, Academic Press.Google Scholar
  17. Lyne, W.H., R. Swinbank and N.T. Birch, 1982: A data assimilation experiment, with results showing the atmospheric circulation during the FGGE special observing periods, Quart. J. R. Met. Soc., 108, 575–594.CrossRefGoogle Scholar
  18. Panofsky, H., 1949: Objective weather-map analysis, J. Appl. Meteor, 6, 386–392.CrossRefGoogle Scholar
  19. Parrish, D.F. and J.C. Derber, 1992: The National Meteorological Center’s spectral statistical interpolation analysis scheme. Mon. Wea. Rev., 120, 1747–1763.CrossRefGoogle Scholar
  20. Richardson, L., 1922: Weather prediction by numerical process, Cambridge University Press, Cambridge.Google Scholar
  21. Rood, R.B., P.A. Newman, L.R. Lait, D.J. Lamich, K.R. Chan, 1990: Stratospheric temperatures during AASE: results from STRATAN. Geophys. Res. Lett., 17, 337–340.CrossRefGoogle Scholar
  22. Swinbank, R. and A. O’Neill, 1994: A stratosphere-troposphere data assimilation system, Monthly Weather Review, 122, 686–702.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • R. Swinbank
    • 1
  1. 1.NWP DivisionMet OfficeBracknell, BerkshireUK

Personalised recommendations