Advertisement

Global ENA IMAGE Simulations

  • M.-C. Fok
  • T. E. Moore
  • G. R. Wilson
  • J. D. Perez
  • X. X. Zhang
  • P. C:Son Brandt
  • D. G. Mitchell
  • E. C. Roelof
  • J.-M. Jahn
  • C. J. Pollock
  • R. A. Wolf
Chapter

Abstract

The energetic neutral atom (ENA) images obtained by the ISEE and POLAR satellites pointed the way toward global imaging of the magnetospheric plasmas. The Imager for Magneto-pause to Aurora Global Exploration (IMAGE) is the first mission to dedicate multiple neutral atom imagers: HENA, MENA and LENA, to monitor the ion distributions in high-, medium- and low-energy ranges, respectively. Since the start of science operation, HENA, MENA and LENA have been continuously sending down images of the ring current, ionospheric outflow, and magnetosheath enhancements from high pressure solar wind. To unfold multiple-dimensional (equal or greater than 3) plasma distributions from 2-dimensional images is not a trivial task. Comparison with simulated ENA images from a modeled ion distribution provides an important basis for interpretation of features in the observed images. Another approach is to develop image inversion methods to extract ion information from ENA images. Simulation studies have successfully reproduced and explained energetic ion drift dynamics, the transition from open to closed drift paths, and the magnetosheath response to extreme solar wind conditions. On the other hand, HENA has observed storm-time ion enhancement on the nightside toward dawn that differs from simple concepts but can be explained using more sophisticated models. LENA images from perigee passes reveal unexpected characteristics that now can be interpreted as evidence for a transient superthermal exospheric component that is gravitationally-influenced if not bound. In this paper, we will report ENA simulations performed during several IMAGE observed events. These simulations provide insight and explanations to the ENA features that were not readily understandable previously.

Keywords

Solar Wind Plasma Sheet Auroral Zone Pitch Angle Distribution Energetic Neutral Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashour-Abdalla, M., Berchem, J.P., Buchner, J., and Zelenyi, L.M.: 1993, ’Shaping of the magnetotail from the mantle: global and Local structuring’, J. Geophys. Res. 98, 5651–5676.CrossRefADSGoogle Scholar
  2. Borovsky, J.E., Thomsen, M.F., and Elphic, R.C.: 1998, ’The driving of the plasma sheet by the solar wind’, J. Geophys. Res. 103, 17,617–17,639.Google Scholar
  3. Brandt, P.C., Barabash, S., Roelof, E.C., and Chase, C.J.: 2001, ’Energetic neutral atom imaging at low altitudes from the Swedish microsatellite Astrid: Extraction of the equatorial ion distribution’, J. Geophys. Res. 106, 25,731–25,744.Google Scholar
  4. Burke, W.J., Maynard, N.C., Hagan, M.P., Wolf, R.A., Wilson, G.R., Gentile, L.C., Gussenhoven,M.S., Huang, C.Y., Garner, T.W., and Rich, F.J.: 1998, ’Electrodynamics of the inner magneto-sphere observed in the dusk sector by CRRES and DMSP during the magnetic storm of June 4–6,1991’, J. Geophys. Res. 103, 29,399–29,418.Google Scholar
  5. Chappell, C.R.: 1988, ’The terrestrial plasma source: A new perspective in solar-terrestrial processes from Dynamics Explorer’, Rev. Geophys. 26, 229.CrossRefADSGoogle Scholar
  6. Chase, C.J., and Roelof, E.C.: 1997, ’Computer simulations of energetic neutral atom imaging from low and high altitude spacecraft’, Adv. Space Res. 20, 355–359.CrossRefADSGoogle Scholar
  7. Collier, M.R. etal.: 2001, ’Observations of neutral atoms from the solar wind’, J. Geophys. Res. 106,24,893–24,906.Google Scholar
  8. Ebihara, Y., and Ejiri, M.: 2000, ’Simulation study on fundamental properties of the storm-time ring current’, J. Geophys. Res. 105, 15843–15859.CrossRefADSGoogle Scholar
  9. Fok, M.-C., and Moore, T.E.: 1997, ’Ring current modeling in a realistic magnetic field configuration’,Geophys. Res. Lett. 24, 1775–1778.CrossRefADSGoogle Scholar
  10. Fok, M.-C., Moore, T.E., and Delcourt, D.C.: 1999, ’Modeling of inner plasma sheet and ring current during substorms’, J. Geophys. Res. 104, 14,557–14,569.Google Scholar
  11. Fok, M.-C., Wolf, R.A., Spiro, R.W., and Moore, T.E.: 2001, ’Comprehensive computational model of the Earth’s ring current’, J. Geophys. Res. 106, 8417–8424.CrossRefADSGoogle Scholar
  12. Fuselier, S.A., Collin, H.L., Ghielmetti, A.G., Claflin, S.E., Moore, T.E., Collier, M.R., Frey, H., and Mende, S.B.: 2002, ’Localized ion outflow in response to a solar wind pressure pulse’, J. Geophys. Res., in press.Google Scholar
  13. Galand, M., and Richmond, A.D.: 1999, ’Magnetic mirroring in an incident proton beam’, J. Geophys. Res. 104, 4447–4455.CrossRefADSGoogle Scholar
  14. Groth, CRT., Zeeuw, D.L., Gombosi, T.I., and Powell, K.G.: 2000, ’Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere’, J. Geophys. Res. 105, 25053–25078.CrossRefADSGoogle Scholar
  15. Gruntman, M.: 1997, ’Energetic neutral atom imaging of space plasmas’, Rev. Sci. Instrum. 68, 3617.CrossRefADSGoogle Scholar
  16. Harel, M., Wolf, R.A., Reiff, P.H., Spiro, R.W., Burke, W.J., Rich, F.J., and Smiddy, M.: 1981, ’Quantitative simulation of a magnetospheric substorm, 1, Model logic and overview’, J. Geophys. Res. 86, 2217–2241.CrossRefADSGoogle Scholar
  17. Hedin, A.E.: 1991, ’Extension of the MSIS thermospheric model into the middle and lower atmosphere’, J. Geophys. Res. 96, 1159–1172.CrossRefADSGoogle Scholar
  18. Henderson, M.G., Reeves, G.D., Spence, H.E., Sheldon, R.B., Jorgensen, A.M., Blake, J.B., and Fennell, J.E: 1997, ’First energetic neutral atom images from POLAR’, Geophys. Res. Lett. 24, 1167–1170.CrossRefADSGoogle Scholar
  19. Hickey, M.P., Richards, P.G., and Torr, D.G.: 1995, ’New sources for the hot oxygen geocorona: Solar cycle, seasonal, latitudinal, and diurnal variations’, J. Geophys. Res. 100, 17377–17388.CrossRefADSGoogle Scholar
  20. Ishimoto, M., Romick, G.J., and Meng, C.-L: 1992, ’Energy distribution of energetic 0+ precipitation into the atmosphere’, J. Geophys. Res. 97, 8619–8629.CrossRefADSGoogle Scholar
  21. Labitzke, K., Barnett, J.J., and Edwards, B. (eds.): 1985, Handbook MAP 16, SCOSTEP, University of Illinois, Urbana.Google Scholar
  22. McComas, D.J., Elphic, R.C., Moldwin, M.B., and Thomsen, M.F.: 1994, ’Plasma observations of magnetopause crossing at geosynchronous orbit’, J. Geophys. Res. 99, 21249–21255.CrossRefADSGoogle Scholar
  23. McIlwain, C.E.: 1974, ’Substorm injection boundaries’, Mangetospheric Physics, edited by B.M. McCormac, pp. 143–154, D. Reidel, Norwell, Mass.CrossRefGoogle Scholar
  24. Mitchell, D.G., Kutchko, F., Williams, D.J., Eastman, T.E., Frank, L.A., and Russell, C.T.: 1987, ’An extended study of the low-latitude boundary layer on the dawn and dusk flanks of the magnetosphere’, J. Geophys. Res. 92, 7394–7404.CrossRefADSGoogle Scholar
  25. Mitchell, D.G. et al.: 2000, ’High energy neutral atom (HENA) imager for the IMAGE mission’, Space Sci. Rev. 91, 67–112.CrossRefADSGoogle Scholar
  26. Mitchell, D.G., Hsieh, K.C., Curtis, C.C., Hamilton, D.C., Voss, H.D., Roelof, E.C., and Brandt, P.C.: 2001, ’Imaging two geomagnetic storms in energetic neutral atoms’, Geophys. Res. Lett. 28, 1151–1154.CrossRefADSGoogle Scholar
  27. Moore, T.E.: 1991, ’Origins of magnetospheric plasma’, Rev. Geophys. 29, 1039–1048.ADSGoogle Scholar
  28. Moore, T.E., Fok, M.-C, Perez, J.D., and Keady, J.P.: 1995, ’Microscale effects from global hot plasma imagery’, in Cross-Scale Coupling in Space Plasmas, Geophys. Monogr. Ser., vol. 93, J.L. Horwitz, N. Singh, and J.L. Burch (eds.), pp. 37–46, AGU, Washington, D.CCrossRefGoogle Scholar
  29. Moore, T.E., Peterson, W.K., Russell, C.T., Chandler, M.O., Collier, M.R., Collin, H.L., Craven, P.D., Fitzenreiter, R., Giles, B.L., and Pollock, C.J.: 1999, ’Ionospheric mass ejection in response to a CME’, Geophys. Res. Lett. 26, 2339–2342.CrossRefADSGoogle Scholar
  30. Moore, T.E., et al.: 2000, ’The low-energy neutral atom imager for IMAGE’, Space Sci. Rev. 91, 155–195.CrossRefADSGoogle Scholar
  31. Moore, T.E., et al.: 2001, ’Low energy neutral atoms in the magnetosphere’, Geophys. Res. Lett. 28, 1143–1146.CrossRefADSGoogle Scholar
  32. Moore, T.E., Collier, M.R., Fok, M.-C., Fuselier, S.A., Simpson, D.G., Wilson, G.R., and Chandler, M.O., ’Solar wind-magnetosphere interactions via low energy neutral atom imaging’, this issue.Google Scholar
  33. Perez, J.D., Fok, M.-C., and Moore, T.E.: 2000a, ’Imaging a geomagnetic storm with energetic neutral atoms’, J. Atmo. Solar Terr. Phys. 62, 911–917.CrossRefADSGoogle Scholar
  34. Perez, J.D., Fok, M.-C., and Moore, T.E.: 2000b, ’Deconvolution of energetic neutral atom images of the Earth’s magnetosphere’, Space Sci. Rev. 91, 421–436.CrossRefADSGoogle Scholar
  35. Perez, J.D., Kozlowski, G., Brandt, P.C., Mitchell, D.G., Jahn, J.-M., Pollock, C.J., and Zhang, X.X.: 2001, ’Initial ion equatorial pitch angle distributions from medium and high energy neutral atom images obtained by IMAGE’, Geophys. Res. Lett. 28, 1155–1158.CrossRefADSGoogle Scholar
  36. Pollock, C.J., et al.: 2000, ’Medium Energy Neutral Atom (MENA) imager for the IMAGE mission’, Space Sci. Rev. 91, 113–154.CrossRefADSGoogle Scholar
  37. Pollock, C.J., et al.: 2001, ’First medium energy neutral atom (MENA) images of Earth’s magneto-sphere during substorm and storm-time’, Geophys. Res. Lett. 28, 1147–1150.CrossRefADSGoogle Scholar
  38. Reeves, G.D., and Henderson, M.G.: 2001, ’The storm-substorm relationship: ion injections in geosynchronous measurements and composite energetic neutral atom images’, J. Geophys. Res. 106, 5833–5844.CrossRefADSGoogle Scholar
  39. Roelof, E.C.: 1987, ’Energetic neutral atom image of a storm-time ring current’, Geophys. Res. Lett. 14, 652–655.CrossRefADSGoogle Scholar
  40. Roelof, E.C.: 1997, ’ENA emission from nearly-mirroring magnetospheric ions interacting with the exosphere’, Adv. Space Res. 20, 361–366.CrossRefADSGoogle Scholar
  41. Roelof, E.C., and Skinner, A.J.: 2000, ’Extraction of distributions from magnetospheric ENA and EUV images’, Space Sci. Rev. 91, 437–459.CrossRefADSGoogle Scholar
  42. Rowland, D.E., and Wygant, J.R.: 1998, ’Dependence of the large-scale, inner magnetospheric electric field on geomagnetic activity’, J. Geophys. Res. 103, 14,959–14,964.Google Scholar
  43. Tsyganenko, N.A.: 1995, ’Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause’, J. Geophys. Res. 100, 5599–5612.CrossRefADSGoogle Scholar
  44. Tsyganenko, N.A., and Stern, D.P.: 1996, ’Modeling the global magnetic field of the large-scale Birkeland current systems’, J. Geophys. Res. 101, 27187–27198.CrossRefADSGoogle Scholar
  45. Wahba, G.: 1990, Spline Models for Observational Data, Society for Industrial and Applied Mathematics, Philadelphia.CrossRefzbMATHGoogle Scholar
  46. Weimer, D.R.: 1995, ’Models of high-latitude electric potentials derived with a least error fit of spherical harmonic coefficients’, J. Geophys. Res. 100, 19595–19607.CrossRefADSGoogle Scholar
  47. Winglee, R.M.: 1998, ’Multi-fluid simulations of the magnetosphere: The identification of the geopause and its variation with IMF’, Geophys. Res. Lett. 25, 4441–4444.CrossRefADSGoogle Scholar
  48. Wolf, R.A.: 1970, ’Effects of ionospheric conductivity on convective flow of plasma in the magnetosphere’, J. Geophys. Res. 75, 4677–4698.CrossRefADSGoogle Scholar
  49. Wolf, R.A.: 1974, ’Calculations of magnetospheric electric fields’, in Magnetospheric Physics, B.M. McCormac (ed), pp. 167–177, D. Reidel, Dordrecht, Netherlands.CrossRefGoogle Scholar
  50. Wolf, R.A.: 1983, ’The quasi-static (slow-flow) region of the magnetosphere’, in Solar Terrestrial Physics, R.L. Carovillano and J.M. Forbes (eds.), pp. 303–368, D. Reidel, Norwell, Mass.CrossRefGoogle Scholar
  51. Wygant, J., Rowland, D., Singer, HJ., Temerin, M., Mozer, F., and Hudson, M.K.: 1998, ’Experimental evidence on the role of the large spatial scale electric field in creating the ring current’, J. Geophys. Res. 103, 29527–29544.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M.-C. Fok
    • 1
  • T. E. Moore
    • 1
  • G. R. Wilson
    • 2
  • J. D. Perez
    • 3
  • X. X. Zhang
    • 3
  • P. C:Son Brandt
    • 4
  • D. G. Mitchell
    • 4
  • E. C. Roelof
    • 4
  • J.-M. Jahn
    • 5
  • C. J. Pollock
    • 5
  • R. A. Wolf
    • 6
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Mission Research CorporationNashuaUSA
  3. 3.Department of PhysicsAuburn UniversityAuburnUSA
  4. 4.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA
  5. 5.Southwest Research InstituteSan AntonioUSA
  6. 6.Rice UniversityHoustonUSA

Personalised recommendations