Advertisement

Heliosphere-Geosphere Interactions Using Low Energy Neutral Atom Imaging

  • T. E. Moore
  • M. R. Collier
  • M.-C. Fok
  • S. A. Fuselier
  • H. Khan
  • W. Lennartsson
  • D. G. Simpson
  • G. R. Wilson
  • M. O. Chandler
Chapter

Abstract

Development of the low energy neutral atom (LENA) imager was originally motivated by a need to remotely sense plasma heating in the topside ionosphere, with the goal of greatly enhanced temporal resolution of an otherwise familiar phenomenon. During ground test and calibration, the LENA imager was found to respond to neutral atoms with energies well above its nominal energy range of 10–750 eV, up to at least 3–4 keV, owing to sputtering interactions with its conversion surface. On orbit, LENA has been found to respond to a ubiquitous neutral atom component of the solar wind, to the neutral atoms formed by magnetosheath interactions with the geocorona during periods of high solar wind pressure, and to the interstellar neutral atoms flowing through the heliosphere during the season of maximal relative wind velocity between spacecraft and interstellar medium. LENA imaging has thus emerged as a promising new tool for studying the interplanetary medium and its interaction with the magnetosphere, in addition to the ionospheric heating and outflow that result from this interaction. LENA emissions from the ionosphere consist of a fast component that can be observed at high altitudes, and slower components that evidently create a quasi-trapped extended superthermal exosphere. The more energetic emissions are responsive to solar wind energy inputs on time scales of a few minutes.

Keywords

Solar Wind Neutral Atom Auroral Zone Solar Wind Dynamic Pressure Solar Wind Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertaux, J.L. and Blamont, J.E.: 1973, ‘Interpretation of OGO-5 Lyman alpha measurements in the upper geocorona’, J. Geophys. Res. 78, 80.CrossRefADSGoogle Scholar
  2. Brandt, P.C:son, Barabash, S., Roelof, E.C. and Chase, C.J.: 2001, ‘ENA Imaging at Low Altitudes From the Swedish Microsatellite Astrid: Observations at low (<1O keV) energies’, 106,(A11),p. 24663.Google Scholar
  3. Burch, J.L. et al.: 26 Jan 2001, ‘Views of Earth’s Magnetopshere with the IMAGE Satellite’, Science,291, p. 619.CrossRefADSGoogle Scholar
  4. Carruthers, G.R., Page, T. and Meier, R.R.: 1976, ‘Apollo 16 Lyman alpha imagery of the hydrogen geocorona’, J. Geophys. Res. 81, p. 1664.CrossRefADSGoogle Scholar
  5. Collier, Michael, Thomas, R., Moore, E., Ogilvie, Keith W., Chornay, Dennis, Keller, J.W., Board-sen,S., Burch, James, Marji, B.E1., Fok, M.-C., Fuselier, S.A. Ghielmetti, A.G., Giles, B.L.,Hamilton, D.C., Peko, B.L., Quinn, J.M., Roelof, E.C., Stephen, T.M., Wilson, G.R. and Wurz, P.:2001, ‘Observations of neutral atoms from the solar wind’, J. Geophys. Res. 106, 24,893–24,906.Google Scholar
  6. Collier, M.R., Moore, T.E., Ogilvie, K., Chornay, D.J., Keller, J., Fuselier, S., Quinn, J., Wurz, P.,Wuest, M. and Hsieh, K.C.: 2002, ‘Dust in the wind: The dust geometric cross section at 1AU based on neutral solar wind observations’, Solar Wind 10 Proceedings, 2003.Google Scholar
  7. Collier, M.R., Moore, T.E., Simpson, D.G., Roberts, A., Szabo, A., Fuselier, S., Wurz, P., Lee, M.A.and Tsurutani, B.T.: 2003, ‘Adv. In Space Res., Proceedings of COSPAR 2002’, in review.Google Scholar
  8. Fok, M.-C., Moore, T.E., Wilson, G.R., Perez, J.D., Zhang, X., Brandt, PC:son, D G Mitchell, D.G.,Roelof, E.C., Jahn, J.M., Pollock, C.J., Wolf, R.A.: 2003, ‘Global ENA IMAGE Simulations’,this volume.Google Scholar
  9. Fuselier, S.A., Ghielmetti, A.G., Moore, T.E., Collier, M.R. et al.: 2001, ‘Ion outflow observed by IMAGE: Implications for source regions and heating mechanisms’, Geophys. Res. Lett. Vol. 28, 6, p. 1163.CrossRefADSGoogle Scholar
  10. Fuselier, SA, Collin, H.L., Ghielmetti, A.G., Claflin, E.S., Moore, T.E., Collier, M.R., Frey, H. and Mende, S.B.: 2002, ‘Localized ion outflow in response to a solar wind pressure pulse’, J. Geophys. Res., 107(A8), SMP 26–1, 2002.CrossRefGoogle Scholar
  11. Gloeckler, G. and Geiss, J.: 2001, ‘Heliospheric and interstellar phenomena deduced from pickup ion observations’, Space Sci. Rev. 97, p. 169.CrossRefADSGoogle Scholar
  12. Groth, C.P.T., Zeeuw, D.L., Gombosi, T.I. and Powell, K.G.: 2000, ‘Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere’, J. Geophys. Res. 105, 25053–25078.CrossRefADSGoogle Scholar
  13. Hedin, A.E.: 1991, ‘Extension of the MSIS Thermospheric Model into the Middle and Lower Atmosphere’, J. Geophys. Res. 96, 1159.CrossRefADSGoogle Scholar
  14. Holzer, T.E.: 1977, ‘Neutral hydrogen in interplanetary space’, Revs. Geophys. Space Phys. 15, p. 467.CrossRefADSGoogle Scholar
  15. Khan, H., Collier, M.R. and Moore, T.E.: 2002, ‘Observations of ionospheric outflow events as measured by the Low Energy Neutral Atom (LENA) imager on IMAGE in association with variations in the solar wind’, EOS Trans. AGU, 83(47), Fall Meet. Suppl., Abstract SA12AA-08, 2002.Google Scholar
  16. Lallement, R.: 1999, ‘Global Structure of the Heliosphere: Optical Observations, Solar Wind 9’, Habbai et al. eds., AIP 471, p. 205–210.Google Scholar
  17. McFadden, J.P., Carlson, C.W. and Ergun, R.E.: 1999, ‘Microstructure of the auroral acceleration as observed by FAST’, J. Geophys. Res. 104(A7), p. 14,453.Google Scholar
  18. Mitchell, D.G., et al., this volume.Google Scholar
  19. Moore, T.E., Lundin, R. et al.: 1999, ‘Source processes in the high latitude ionosphere’, Space Sci. Revs 88(1–2), p. 7.CrossRefADSGoogle Scholar
  20. Moore, T.E., Chornay, D.J., Collier, M.R., Herrero, F.A., Johnson, J., Johnson, M.A., Keller, J.W., Laudadio, J.F., Lobell, J.V., Ogilvie, K.W., Rozmarynowski, P., Fuselier, S.A., Ghielmetti, A.G., Hertzberg, E., Hamilton, D.C., Lundgren, R., Wilson, P., Walpole, P., Stephen, T.M., Peko, B.L., Van Zyl, B., Wurz, P., Quinn, J.M., Wilson, G.R.: 2000, The Low Energy Neutral Atom Imager for IMAGE, Space Sci. Revs, 91, 155–195.CrossRefADSGoogle Scholar
  21. Moore, T.E. , Collier, M.R., Burch, J.L., Chornay, D.J. et al.: 2001, ‘Low Energy Neutral Atoms in the Magnetosphere’, Geophys. Res. Lett. Vol. 28, 6, p. 1143.CrossRefADSGoogle Scholar
  22. Pollock, C.J. et al., this volume.Google Scholar
  23. Rairden, R.L., Frank, L.A. and Craven, J.D.: 1986, ‘Geocoronal Iimaging with Dynamics Explorer’, J. Geophys. Res. 91, p. 13613.CrossRefADSGoogle Scholar
  24. Schwadron, N.A., Geiss, J., Fisk, L.A., Gloeckler, G., Zurbuchen, T.H. and von Steiger, R.: 2000, ‘Inner source distributions: Theoretical interpretation, implications, and evidence for inner source protons’, J. Geophys. Res. 105, p. 7465.CrossRefADSGoogle Scholar
  25. Scudder, J.D.: 1992,The cause of the coronal temperature inversion of the solar atmosphere and the implications for the solar wind, in Solar Wind Seven, ed. by Marsch, E. and Schwenn, R., p. 103, Pergammon Press, Oxford.Google Scholar
  26. Suess, S.T.: 1990, ‘The Heliopause’, Revs. Geophys., 28(1), p. 97.CrossRefADSGoogle Scholar
  27. Wilson, G.R., Moore, T.E. and Collier, M.R.: 2003, ‘Low energy neutral atoms observed near the Earth’, J. Geophys. Res. 108(A4), 10.1029/2002JAOO9643, 3 April 2003.CrossRefGoogle Scholar
  28. Witte, M., Rosenbauer, H., Banaszkiewicz, M. and Fahr, H.: 1993, ‘The Ulysses neutral gas experiment:Determination of the velocity and temperature of the interstellar medium’, Adv. Space Res. 13(6), p. 121.CrossRefADSGoogle Scholar
  29. Yau, A.W., Shelley, E.G., Peterson, W.K., Lenchyshyn, L.: 1985, ‘Energetic Auroral and Polar Ion Outflow and DE 1 Altitudes: Magnitude, Composition, Magnetic Activity Dependence, and Long-Term Variations’, J. Geophys. Res. 90, 8417.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • T. E. Moore
    • 1
  • M. R. Collier
    • 1
  • M.-C. Fok
    • 1
  • S. A. Fuselier
    • 2
  • H. Khan
    • 1
  • W. Lennartsson
    • 2
  • D. G. Simpson
    • 1
  • G. R. Wilson
    • 3
  • M. O. Chandler
    • 4
  1. 1.Interplanetary Physics Branch, Code 692NASA’s Goddard Space Flight CenterGreenbeltUSA
  2. 2.Lockheed Martin Advanced Technology CenterPalo AltoUSA
  3. 3.Mission Research CorporationNashuaUSA
  4. 4.NASA MSFC SD5ONational Space Science and Technology CenterHuntsvilleUSA

Personalised recommendations