Advertisement

Summary of Quantitative Interpretation of IMAGE Far Ultraviolet Auroral Data

  • H. U. Frey
  • S. B. Mende
  • T. J. Immel
  • J.-C. Gérard
  • B. Hubert
  • S. Habraken
  • J. Spann
  • G. R. Gladstone
  • D. V. Bisikalo
  • V. I. Shematovich
Chapter

Abstract

Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from the magnetosphere into the atmosphere. This paper describes the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman-α emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman-α images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy flux. To accomplish this, reliable emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.

Keywords

IMAGE Far Ultraviolet instrument FUV aurora quantitative proton electron flux and energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajello, J.M. and Shemansky, D.E.: 1985, ‘A reexamination of important N2 cross sections by electron impact with application to the dayglow: The Lyman-Birge-Hopfield band system and N I (199.99 nm)’, J. Geophys. Res. 90, 9845.CrossRefADSGoogle Scholar
  2. Anger, C.D., Babey, S.K., Broadfoot, A.L., Brown, R.G., Cogger, L.L., Gattinger, R., Haslett, J.W., King, R.A., McEwen, D.J., Murphree, J.S., Richardson, E.H., Sandel, B.R., Smith, K. and Jones, A.V.: 1987, ‘An ultraviolet auroral imager for the Viking spacecraft’, Geophys. Res. Lett. 14, 387.CrossRefADSGoogle Scholar
  3. Cassatella, A., Altamore, A., Gonzalez-Riestra, R., Ponz, J.D., Barbero, J., Talavera, A. and Wamsteker, W.: 2000, ‘The INES system, 2, Ripple correction and absolute calibration for the IUE high resolution spectra’, Astron. Astrophys. Suppl. 141, 331.CrossRefADSGoogle Scholar
  4. Chua, D, Parks, G., Brittnacher, M., Peria, W., Germany, G., Spann, J. and Carlson, C: 2001, ‘Energy characteristics of auroral electron precipitation: a comparison of substorms and pressure pulse related auroral activity’, J. Geophys. Res. 106, 5945.CrossRefADSGoogle Scholar
  5. Coumans, V., Gérard, J.-C., Hubert, B. and Evans, D.S.: 2002, ‘Electron and proton excitation of the FUV aurora: simultaneous IMAGE and NOAA observations’, J. Geophys. Res. 107(A11), 1347, doi: 10.1029/2001JA009233.CrossRefGoogle Scholar
  6. Drob, D.P., Meier, R.R., Picone, J.M., Strickland, D.J., Cox, R.J. and Nicholas, A.C.: 1999, ‘Atomic oxygen in the thermosphere during the July 13, 1982, proton event deduced from far ultraviolet images’, J. Geophys. Res. 104, 4267.CrossRefADSGoogle Scholar
  7. Frank, L.A., Craven, J.D., Ackerson, K.L., English, M.R., Eather, R.H. and Crovillano, R.L.: 1981, ‘Global auroral imaging instrumentation for the Dynamics Explorer mission’, Space Sci. Instrum. 5, 369–393.ADSGoogle Scholar
  8. Frank, L.A. and Craven, J.D.: 1988, Imaging results from Dynamics Explorer 1, Rev. Geophys. 2, 249.CrossRefADSGoogle Scholar
  9. Frey, H.U., Mende, S.B., Carlson, C.W., Gérard, J.-C., Hubert, B., Spann, J., Gladstone, R. and Immel, T.J.: 2001, ‘The electron and proton aurora as seen by IMAGE-FUV and FAST’, Geophys. Res. Lett. 28, 1135.CrossRefADSGoogle Scholar
  10. Frey, H.U., Mende, S.B., Immel, T.J., Fuselier, S.A., Claflin, E.S., Gérard, J.-C. and Hubert, B.: 2002, ‘Proton aurora in the cusp’, J. Geophys. Res. 107(A7), 1091, 10.1029/2001JA900161.CrossRefGoogle Scholar
  11. Gérard, J.-C., Hubert, B., Bisikalo, D.V. and Shematovich, V.I.: 2000, ‘A model of the Lyman-α line profile in the proton aurora’, J. Geophys. Res. 105, 15795.CrossRefADSGoogle Scholar
  12. Gérard, J.-C., Hubert, B., Meurant, M., Shematovich, V.I., Bisikalo, D.V, Frey, H., Mende, S., Gladstone, G.R. and Carlson, C.W.: 2001, ‘Observation of the proton aurora with IMAGE FUV imager and simultaneous ion flux in situ measurements’, J. Geophys. Res. 106, 28939.CrossRefADSGoogle Scholar
  13. Gladstone, G.R.: 1994, ‘Simulations of DE-1 UV airglow images’, J. Geophys. Res. 99, 11,441.CrossRefADSGoogle Scholar
  14. Gladstone, R., Mende, S.B., Frey, H.U., Geller, S.P., Immel, T.J., Lampton, M., Spann, J., Gerard, J.-C., Habraken, S., Renotte, E., Jamar, C., Rochus, P. and Lauche, H.: 2000, ‘Stellar Calibration of the WIC and SI Imagers and the GEO Photometers on IMAGE/FUV’, Trans. AGU 81, 48, F1034.Google Scholar
  15. Germany, G.A., Torr, M.R., Torr, D.G. and Richards, P.G.: 1994, ‘Use of FUV auroral emissions as diagnostic indicators’, J. Geophys. Res. 99, 383.CrossRefADSGoogle Scholar
  16. Germany, G.A., Parks, G.K., Brittnacher, M., Cumnock, J., Lummerzheim, D., Spann, J.F., Chen, L., Richards, P.G. and Rich, F.J.: 1997, ‘Remote determination of auroral energy during substorm activity’, Geophys. Res. Lett. 24, 995.CrossRefADSGoogle Scholar
  17. Hardy, D.A., Gussenhoven, M.S. and Brautigam, D.: 1989, ‘A statistical model of auroral ion precipitation’, J. Geophys. Res. 94, 370.CrossRefADSGoogle Scholar
  18. Hardy, D.A., McNeil, W., Gussenhoven, M.S. and Brautigam, D.: 1991, ‘A statistical model of auroral ion precipitation: 2. Functional representation of the average patterns’, J. Geophys. Res. 96, 5539.CrossRefADSGoogle Scholar
  19. Hedin, A.E.: 1991, ‘Extension of the MSIS thermosphere model into the middle and lower atmosphere’, J. Geophys. Res. 96, 1159.CrossRefADSGoogle Scholar
  20. Hubert, B., Gerard, J.-C., Bisikalo, D.V., Shematovich, V.I. and Solomon, S.C.: 2001, ‘The role of proton precipitation in the excitation of auroral FUV emissions’, J. Geophys. Res. 106, 21475.CrossRefADSGoogle Scholar
  21. Hubert, B., Gerard, J.-C., Evans, D.S., Meurant, M., Mende, S.B., Frey, H.U. and Immel, T.J.: 2002, ‘Total electron and proton energy input during auroral substorms: remote sensing with IMAGE-FUV’, J. Geophys.Res. 107(A8), 10.1029/2001JA009229.Google Scholar
  22. Hunten, D.M., Roach, F.E. and Chamberlain, J.W.: 1956, A photometric unit for the airglow and aurora, J. Atmos. Terr. Phys. 8, 345–346.CrossRefGoogle Scholar
  23. Immel, T.J., Craven, J.D. and Nicholas, A.C.: 2000, ‘An empirical model of the OI FUV dayglow from DE-1 images’, J. Atmos. Solar-Terr. Phys. 62, 47.CrossRefADSGoogle Scholar
  24. Lummerzheim, D., Brittnacher, M., Evans, D., Germany, G.A., Parks, G.K., Rees, M.H., and Spann, J.F.: 1997, ‘High time resolution study of the hemispheric power carried by energetic electrons into the ionosphere during the May 19/20, 1996 auroral activity’, Geophys. Res. Lett. 24, 987.CrossRefADSGoogle Scholar
  25. Lummerzheim, D., Galand, M., Semeter, J., Mendillo, M.J., Rees, M.H. and Rich, F.J.: 2001, ‘Emission of O I (630 nm) in proton aurora’, J. Geophys. Res. 106, 141.CrossRefADSGoogle Scholar
  26. Lummerzheim, D. and Galand, M.: 2001, ‘The profile of the hydrogen Hß-emission line in proton aurora’, J. Geophys. Res. 106, 23.CrossRefADSGoogle Scholar
  27. Meier, R.R.: 1991, ‘Ultraviolet spectroscopy and remote sensing of the upper atmosphere’, Space Sci. Rev. 58, 1.CrossRefADSGoogle Scholar
  28. Mende, S.B., Heetderks, H., Frey, H.U., Lampton, M., Geller, S.P., Habraken, S., Renotte, E., Jamar, C., Rochus, P., Spann, J., Fuselier, S.A., Gerard, J.-C., Gladstone, R., Murphree, S. and Cogger, L.: 2000, ‘Far ultraviolet imaging from the IMAGE spacecraft’, Space Sci. Rev. 91, 243.CrossRefADSGoogle Scholar
  29. Murphree, J.S., King, R.A., Payne, T., Smith, K., Reid, D., Adema, J. and Gordon, B.: 1994, ‘The Freja Ultraviolet Imager’, Space Science Rev. 70, 421–446.CrossRefADSGoogle Scholar
  30. Solomon, S.C., Hays, P.B. and Abreu, V: 1988, ‘The auroral 6300 A emission: observation and modelling’, J. Geophys. Res. 93, 9867.CrossRefADSGoogle Scholar
  31. Solomon, S.C.: 2001, ‘Auroral particle transport using Monte Carlo hybrid methods’, J. Geophys. Res. 106, 107.CrossRefADSGoogle Scholar
  32. Strickland, D.J. and Anderson, Jr., D.E.: 1983, ‘Radiation transport effects on the OI 1356-AA limb intensity profile in the dayglow’, J. Geophys. Res. 88, 9260.CrossRefADSGoogle Scholar
  33. Strickland, D.J., Jasperse, J.P. and Whalen, J.A.: 1983, ‘Dependence of auroral FUV emissions on the incident electron spectrum and neutral atmosphere’, J. Geophys. Res. 88, 8051.CrossRefADSGoogle Scholar
  34. Strickland, DJ., Daniell, Jr., R.E., Jasperse, J.R. and Basu, B.: 1993, ‘Transport-theoretic model for the electron-proton-hydrogen atom aurora’, J. Geophys. Res. 98, 21533.CrossRefADSGoogle Scholar
  35. Strickland, DJ., Cox, R.J., Meier, R.R. and Drob, D.P.: 1999, ‘Global 0/N2 derived from DE-1 FUV day glow data: Technique and examples from two storm periods’, J. Geophys. Res., 104, 4251.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • H. U. Frey
    • 1
  • S. B. Mende
    • 1
  • T. J. Immel
    • 1
  • J.-C. Gérard
    • 2
  • B. Hubert
    • 2
  • S. Habraken
    • 3
  • J. Spann
    • 4
  • G. R. Gladstone
    • 5
  • D. V. Bisikalo
    • 6
  • V. I. Shematovich
    • 6
  1. 1.Space Sciences LaboratoryUniversity of California BerkeleyBerkeleyUSA
  2. 2.University of LiègeLiègeBelgium
  3. 3.Centre Spatial de LiègeLiègeBelgium
  4. 4.NASA George C. Marshall Space Flight CenterHuntsvilleUSA
  5. 5.Southwest Research InstituteSan AntonioUSA
  6. 6.Institute of AstronomyRussian Academy of SciencesMoscowRussia

Personalised recommendations