Global Imaging of Proton and Electron Aurorae in the Far Ultraviolet

  • S. B. Mende
  • H. U. Frey
  • T. J. Immel
  • J.-C. Gerard
  • B. Hubert
  • S. A. Fuselier


The IMAGE spacecraft carries three FUV photon imagers, the Wideband Imaging Camera (WIC) and two channels, SI-12 and SI-13, of the Spectrographic Imager. These provide simultaneous global images, which can be interpreted in terms of the precipitating particle types (protons and electrons) and their energies. IMAGE FUV is the first space-borne global imager that can provide instantaneous global images of the proton precipitation. At times a bright auroral spot, rich in proton precipitation, is observed on the dayside, several degrees poleward of the auroral zone. The spot was identified as the footprint of the merging region of the cusp that is located on lobe field lines when IMF Bz was northward. This identification was based on compelling statistical evidence showing that the appearance and location of the spot is consistent with the IMF Bz and By directions. The intensity of the spot is well correlated with the solar wind dynamic pressure and it was found that the direct entry of solar wind particles could account for the intensity of the observed spot without the need for any additional acceleration. Another discovery was the observation of dayside subauroral proton arcs. These arcs were observed in the midday to afternoon MLT sector. Conjugate satellite observations showed that these arcs were generated by pure proton precipitation. Nightside auroras and their relationship to substorm phases were studied through single case studies and in a superimposed epoch analysis. It was found that generally there is substantial proton precipitation prior to substorms and the proton intensity only doubles at substorm onset while the electron auroral brightness increases on average by a factor of 5 and sometimes by as much as a factor of 10. Substorm onset occurs in the central region of the pre-existing proton precipitation. Assuming that nightside protons are precipitating from a quasi-stable ring current at its outer regions where the field lines are distorted by neutral sheet currents we can associate the onset location with this region of closed but distorted field lines relatively close to the earth. Our results also show that protons are present in the initial poleward substorm expansion however later they are over taken by the electrons. We also find that the intensity of the substorms as quantified by the intensity of the post onset electron precipitation is correlated with the intensity of the proton precipitation prior to the substorms, highlighting the role of the pre-existing near earth plasma in the production of the next substorm.


Solar Wind Interplanetary Magnetic Field Magnetic Local Time Auroral Oval Global Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, BJ. and Hamilton, D.C.: 1993, ‘Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions’, J. Geophys. Res. 98, 11369–11382.CrossRefADSGoogle Scholar
  2. Anger, C.D., Moshupi, M.C., Wallis, D.D., Murphree, J.S., Brace, L.H. and Shepherd, G.G.: 1979, ‘Detached auroral arcs in the trough region’, J. Geophys Res. 84, 1333–1346.CrossRefADSGoogle Scholar
  3. Anger, C.D., Babey, S.K., Lyle Broadfoot, A., Brown, R.G., Cogger, L.L., Gattinger, R., Haslett, J.W., King, R.A., McEwen, D.J., Murphree, J.S., Richardson, E.H., Sandel, B.R., Smith, K. and Jones, A.V.: 1987, An ultraviolet auroral imager for the Viking spacecraft’, Geophys. Res. Lett. 14, 387.CrossRefADSGoogle Scholar
  4. Birn, J., Thomsen, M.F., Borovsky, J.E., Reeves, G.D., McComas, D.J. and Belian, R.D.: 1997, ‘Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit’, J. Geophys. Res., 102, 2309–24.CrossRefADSGoogle Scholar
  5. Brice, N. and Lucas, C.: 1975, ‘Interaction between heavier ions and ring current protons’, J. Geophys. Res. 80, 936–942.CrossRefADSGoogle Scholar
  6. Burch, J.L.: 1968, ‘Low-energy electron fluxes at latitudes above the auroral zone’, J. Geophys. Res. 73, 3585.CrossRefADSGoogle Scholar
  7. Burch, J.L.: 2000, ‘Image mission overview’, Space Sci. Rev. 91, 1–14.CrossRefADSGoogle Scholar
  8. Burch J.L., Lewis, W.S., Immel, T.J., Anderson, P.C., Frey, H.U., Fuselier, S.A., Gerard, J.-C., Mende, S.B., Mitchell, D.G. and Thomsen, M.F.: 2002, ‘Interplanetary magnetic field control of afternoon-sector detached proton arcs’, J. Geophys. Res. 107(A9), 1251, doi:1029/2001JAOO7554.CrossRefGoogle Scholar
  9. Cann, M.N., McPherron, R.L. and Russell, C.T.: 1975, ‘Substorm and interplanetary magnetic field effects on the geomagnetic tail lobes’, J. Geophys. Res. 80, 191–4.CrossRefADSGoogle Scholar
  10. Carlson, C.W., McFadden, J.P., Turin, P., Curtis, D.W. and Magoncelli, A.: 2001, ‘The electron and ion plasma experiments for FAST’, Space Sci. Rev. in press.Google Scholar
  11. Chang, S.-W., Mende, S.B., Frey, H.U., Gallagher, D.L. and Lepping, R.P.: 2002, ‘Proton aurora dynamics in response to the IMF and solar wind variations’, Geophys. Res. Lett. 29, 10.1029/2002GL015019.Google Scholar
  12. Deehr, C.S.: 1994, ‘Ground based optical observations of hydrogen emissions in the auroral substorm’, Proceedings of the International Conference on Substorms 2, Fairbanks, USA. P229–236.Google Scholar
  13. DeForest, S.E. and Mcllwain, C.E.: 1971, ‘Plasma clouds in the magnetosphere’, J. Geophys. Res., 76, 3587–3611.CrossRefADSGoogle Scholar
  14. Dunlop, M.W., Cargill, P.J., Stubbs, T.J. and Woolliams, P.: 2000, ‘The high-altitude cusps: HEOS2’, J. Geophys. Res. 105, 27509.CrossRefADSGoogle Scholar
  15. Eather, R.H.: 1967, ‘Auroral proton precipitation and hydrogen emissions’, Rev. Geophys. 5, 207–285.CrossRefADSGoogle Scholar
  16. Eather, R.H., Mende, S.B. and Judge, R.J.R.: 1976, ‘Plasma injection at synchronous orbit and spatial temporal auroral morphology’, J. Geophys. Res. 81, 2805, 1976.ADSGoogle Scholar
  17. Elphinstone, R.D., Murphree, J.S. and Cogger, L.L.: 1996, ‘What is a global auroral substorm?’ Rev. Geophys. 34, 169–232.CrossRefADSGoogle Scholar
  18. Frank, L.A.: 1971, ‘Plasma in the earth’s polar magnetosphere’, J. Geophys. Res. 76, 5202–19.CrossRefADSGoogle Scholar
  19. Frank, L.A., Craven, J.D., Ackerson, K.L., English, M.R., Eather, R.H. and Crovillano, R.L.: 1981, ‘Global auroral imaging instrumentation for the Dynamics Explorer mission’, Space Sci. Instrum. 5, 369–393.ADSGoogle Scholar
  20. Frank, L.A. and Craven, J.D.: 1988, ‘Imaging results from Dynamics Explorer 1’, Rev. Geophys. 2, 249.CrossRefADSGoogle Scholar
  21. Frey, H.U., Mende, S.B., Carlson, C.W., Gérard, J.-C., Hubert, B., Spann, J., Gladstone, R. and Im-mel, T.J.: 2001, ‘The electron and proton aurora as seen by IMAGE-FUV and FAST’, Geophys. Res. Lett. 28, 1135.CrossRefADSGoogle Scholar
  22. Frey, H.U., Mende, S.B., Immel, T.J., Fuselier, S.A., Claflin, E.S., Gérard, J.-C. and Hubert, B.: 2002, ‘Proton aurora in the cusp’, J. Geophys. Res. 107, (A7), 1091, 10.1029/2001JA900161.CrossRefGoogle Scholar
  23. Frey, H.U., Mende, S.B., Immel, T.J., Gérard, J.-C., Hubert, B., Habraken, S., Spann, J. and Gladstone,R.: 2003, ‘Summary of quantitative interpretation of image far ultraviolet auroral data’, Space Sci. Rev. this issue.Google Scholar
  24. Fukunishi, H.: 1975, ‘Dynamic relationship between proton and electron auroral substorms’, J. Geophys. Res. 80, 533.ADSGoogle Scholar
  25. Fuselier, S.A., Anderson, B.J. and Onsager, T.G.: 1997, ‘Electron and ion signatures of field line topology at the low-shear magnetopause’, J. Geophys. Res. 102, 4847.CrossRefADSGoogle Scholar
  26. Fuselier, S.A., Ghielmetti, A.G., Moore, T.E., Collier, M.R., Quinn, J.M., Wilson, G.R., Wurz, P., Mende, S.B., Frey, H.U., Jamar, C., Gérard, J.-C. and Burch, J.L.: 2001, Ion outflow observed by IMAGE: Implications for source regions and heating mechanisms’, Geophys. Res. Lett. 28, 1163.CrossRefADSGoogle Scholar
  27. Fuselier, S.A., Frey, H.U., Trattner, K.J., Mende, S.B. and Burch, J.L.: 2002, ‘Cusp aurora dependence on IMF Bz’, J. Geophys. Res. 107, (A7), 1029/2002JA900165.Google Scholar
  28. Gérard, J.-C., Hubert, B., Bisikalo, D.V. and Shematovich, V.I.: 2000, ‘A model of the Lyman-α line profile in the proton aurora’, J. Geophys. Res. 105, 15795.CrossRefADSGoogle Scholar
  29. Gérard, J.-C., Hubert, B., Bisikalo, D.V., Shematovich, V.I., Frey, H.U., Mende, S.B., Meurant, M., Gladstone, G.R. and Carlson, C.W: 2001, ‘Observation of the proton aurora with IMAGE-FUV and simultaneous ion flux in situ measurements’, J. Geophys. Res. 106, 28939.CrossRefADSGoogle Scholar
  30. Germany, G.A., Parks, G.K., Brittnacher, M., Cumnock, J., Lummerzheim, D., Spann, J.F., Chen, L., Richards, P.G. and Rich, F.J.: 1997, ‘Remote determination of auroral energy characteristics during substorm activity’, Geophys. Res. Lett. 24, 995–998.CrossRefADSGoogle Scholar
  31. Gorney, D.J. and Evans, D.S.: 1987, ‘The low-latitude auroral boundary: steady state and time-dependent representations’, J. Geophys. Res. 92, 13537–45.CrossRefADSGoogle Scholar
  32. Hardy, D.A., Gussenhoven, M.S. and Holeman, E.: 1985, ‘A statistical model of auroral electron precipitation’, J. Geophys. Res. 90, 4229.CrossRefADSGoogle Scholar
  33. Hardy, D.A., Gussenhoven, M.S., Raistrick, R. and McNeil, W.J.: 1987, ‘Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity’, J. Geophys. Res. 92, 12275–12294.CrossRefADSGoogle Scholar
  34. Hardy, D.A., Gussenhoven, M.S. and Brautigam, D.: 1989, ‘A statistical model of auroral ion precipitation’, J. Geophys. Res. 94, 370.CrossRefADSGoogle Scholar
  35. Hardy, D.A., McNeil, W., Gussenhoven, M.S. and Brautigam, D.: 1991, A statistical model of auroral ion precipitation, 2. Functional representation of the average patterns, J. Geophys. Res. 96, 5539.CrossRefADSGoogle Scholar
  36. Hecht, J.H., McKenzie, D.L., Christensen, A.B., Strickland, D.J., Thayer, J.R and Watermann, J.: 2000, ‘Simultaneous observations of lower thermospheric composition change during moderate auroral activity from Kangerlussuaq and Narsarsuaq, Greenland’, J. Geophys. Res. 105, 27109–27118.CrossRefADSGoogle Scholar
  37. Heikkila, W.J. and Winningham, J.D.: 1971, ‘Penetration of magnetosheath plasma to low altitudes through the dayside magnetospheric cusps’, J. Geophys. Res. 76, 883–891.CrossRefADSGoogle Scholar
  38. Hubert, B., Gérard, J.-C., Bisikalo, D.V. and Shematovich, V.I. and Solomon, S.C.: 2001, ‘The role of proton precipitation in the excitation of the auroral FUV emissions’, J. Geophys. Res. 106, 21,475–21,494.ADSGoogle Scholar
  39. Hubert, B, Gérard, J.-C., Evans, D.S., Meurant, M., Mende, S.B., Frey, H.U. and Immel, T.J.: 2002, ‘Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV’, J. Geophys. Res. 107, (A8), 10.1029/2001JAOO9229.Google Scholar
  40. Immel, T.J., Craven, J.D. and Nicholas, A.C.: 2000, ‘An empirical model of the OI FUV dayglow from DE-1 images’, J. Atmos. and Solar-Terr. Phys. 62, 47–64.CrossRefADSGoogle Scholar
  41. Immel, T.J., Mende, S.B., Frey, H.U., Peticolas, L.M. and Carlson, C.W.: 2002, ‘Precipitation of auroral protons in detached arcs’, Geophys. Res. Lett. 29(11), 10.1029/2001GL013847.Google Scholar
  42. Ishimoto, M., Meng, C.-I., Romick, G.R. and Huffman, R.E.: 1989, ‘Doppler shift of auroral Lyman a observed from a satellite’, Geophys. Res., Lett. 16, 117–218.CrossRefGoogle Scholar
  43. Jordanova, V.K., Farrugia, C.J., Thorne, R.M., Khazanov, G.V., Reeves, G.D., Thomsen, M.F.: 2001, ‘Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997, storm’, J. Geophys. Res. 106, 7–22.CrossRefADSGoogle Scholar
  44. Li, X., Baker, D.N., Temerin, M., Peterson, W.K. and Fennell, J.F.: 2000, ‘Multiple discrete-energy ion features in the inner magnetosphere: observations and simulations’, Geophys. Res. Lett. 27, 1447–1450.CrossRefADSGoogle Scholar
  45. Lyons, L.R. and Samson, J.C.: 1992, ‘Formation of the stable arc that intensifies at substorm onset’, Geophys. Res. Lett. 19, 2171–2174.CrossRefADSGoogle Scholar
  46. Mende, S.B. and Eather, R.H.: 1976, ‘Monochromatic all sky observations and auroral precipitation patterns’, J. Geophys. Res. 81, 3771–3780.CrossRefADSGoogle Scholar
  47. Mende, S.B. et al.: 2000, ‘Far ultraviolet imaging from the IMAGE spacecraft. 3. Spectral imaging of Lyman- alpha and O I 135.6 nm’, Space Sci. Rev. 91, 287–318.CrossRefADSGoogle Scholar
  48. Mende, S.B., Frey, H.U., Lampton, M., Gèrard, J.-C., Hubert, B., Fuselier, S., Spann, J., Gladstone, R. and Burch, J.L.: 2001, ‘Global observations of proton and electron auroras in a substorm’, Geophys. Res. Lett. 28, 1139.CrossRefADSGoogle Scholar
  49. Mende, S.B., Frey, H.U., Carlson, C.W., McFadden, J., Gerard, J.-C., Hubert, B., Fuselier, S.A., Gldstone, G.R. and Burch, J.L.: 2002, ‘IMAGE and FAST observations of substrom recovery phase aurora’, Geophys. Res. Lett. 29, 10.1029/2001GL013027.Google Scholar
  50. Mende, S.B., Carlson, C.W., Frey, H.U., Immel, T.J. and Gérard, J.-C.: 2003, ‘IMAGE FUV and in situ FAST particle observations of substorm aurorae’, J. Geophys. Res. 108(A4), 8010, doi: 10.1029/2002JA009413.CrossRefGoogle Scholar
  51. Milan, S.E., Lester, M., Cowley, S.W.H. and Brittnacher, M.: 2000, ‘Dayside convection and auroral morphology during an interval of northward interplanetary magnetic field’, Ann. Geophys. 18, 436–444.CrossRefADSGoogle Scholar
  52. Montbriand, L.E.: 1971, ‘The proton aurora and auroral substorm’, in Radiating Atmosphere, in B.M. McCormac and D. Reidel (eds), Hingham, Mass, p. 366.Google Scholar
  53. Moshupi, M.C., Anger, C.D., Murphree, J.S., Wallis, D.D., Whitteker, J.H. and Brace, L.H.: 1979, ‘Characteristics of trough region auroral patches and detached arcs observed by ISIS 2’, J. Geophys Res. 84, 1333–1346.CrossRefADSGoogle Scholar
  54. Murphree, J.S., King, R.A., Payne, T., Smith, K., Reid, D., Adema, J., Gordon, B. and Wlochowicz, R.: 1994, ‘The Freja Ultraviolet Imager’, Space Sci. Rev. 70, 421–446.CrossRefADSGoogle Scholar
  55. Newell, P.T., Meng, C.-I., Sibeck, D.G. and Lepping, R.: 1989, ‘Some low-altitude cusp dependencies on the interplanetary magnetic field’, J. Geophys. Res. 94, 8921–8927.CrossRefADSGoogle Scholar
  56. Newell, P.T. and Meng, C.I.: 1994, ‘Ionospheric projections of magnetospheric regions under low and high solar wind pressure conditions’, J. Geophys. Res. 99, 273.CrossRefADSGoogle Scholar
  57. Newell P.T, Feldstein, Y.I., Galperin, Y.I. and Meng, Ching-I: 1996, ‘Morphology of nightside precipitation’, J. Geophys. Res. 101, 10737–10748.CrossRefADSGoogle Scholar
  58. Newell, P.T, Liou, K., Sotirelis, T. and Meng, C.I.: 2001, ‘Auroral precipitation power during substorms: a POLAR UV imager-based superposed epoch analysis’, J. Geophys. Res. 106, 28885–28896.CrossRefADSGoogle Scholar
  59. Nilsson, H., Kirkwood, S. and Moretto, T.: 1998, ‘Incoherent scatter radar observations of the cusp acceleration region and cusp field-aligned currents’, J. Geophys. Res. 103, 26721.CrossRefADSGoogle Scholar
  60. Øieroset, M., Sandholt, P.E., Denig, W.F. and Cowley, S.W.H.: 1997, ‘Northward interplanetary magnetic field cusp aurora and high-latitude magnetopause reconnection’, J. Geophys. Res. 102, 11349, 1997.CrossRefADSGoogle Scholar
  61. Onsager, T.G. and Fuselier, S.A.: 1994, ‘The location of magnetic reconnection for northward and southward interplanetary magnetic field’, in J.L. Burch and J.H. Waite Solar System Plasmas in Space and Time, p. 183.CrossRefGoogle Scholar
  62. Reiff, P.H., Hill, T.W. and Burch, J.L.: 1977, Solar wind plasma injection at the dayside magneto-spheric cusp, J. Geophys. Res. 82, 479.CrossRefADSGoogle Scholar
  63. Reiff, P.H. and Burch, J.L.: 1985, ‘IMF By-dependent plasma flow and Birkeland currents in the dayside magnetosphere, II’ . A global model for northward and southward IMF, J. Geophys. Res. 90, 1595.CrossRefADSGoogle Scholar
  64. Rostoker, G., Spadinger, I. and Samson, J.C.: 1984, Local time variation in the response of Pc 5 pulsations in the morning sector to substorm expansive phase onsets near midnight, J. Geophys. Res. 89, 6749–6757.CrossRefADSGoogle Scholar
  65. Russell, C.T., Montgomery, M.D., Neugebauer, M., Scarf, F.L. and Chappell, C.R.: 1971, ‘Ogo 5 observations of the polar cusp on November 1, 1968‘, J. Geophys. Res., 76, 6743–6764.CrossRefADSGoogle Scholar
  66. Samson, J.C. and Yeung, K.L.: 1986, ‘Some generalizations on the method of superposed epoch analysis’, Planetary and Space Science 34, 1133–1142.CrossRefADSGoogle Scholar
  67. Samson, J.C., Lyon, L.R., Newell, P.T., Creutzberg, F. and Xu, B.: 1992, ‘Proton aurora and substorm intensification’, Geophys. Res. Lett. 19, 2167.CrossRefADSGoogle Scholar
  68. Sandel, B.R, King, R.A., Forrester, W.T., Gallagher, D.L., Broadfoot, A.L. and Curtis, C.C.: 2001, ‘Initial results from the IMAGE Extreme Ultraviolet Imager’, Geophys. Res. Lett. 28, 1439–1442.CrossRefADSGoogle Scholar
  69. Sandholt, P.E.: 1997, ‘Dayside polar cusp/cleft aurora: morphology and dynamics’, Phys. Chem. Earth 22, 675.CrossRefGoogle Scholar
  70. Sandholt, P.E., Farrugia, C.J., Moen, J., Noraberg, O., Lybekk, B., Sten, T. and Hansen, T.: 1998, ‘A classification of dayside auroral forms and activities as a function of interplanetary magnetic field orientation’, J. Geophys. Res. 103, 23325.CrossRefADSGoogle Scholar
  71. Schultz, M., Lanzerotti, L.J.: 1974, ‘Particle diffusion in the radiation belts’, Berlin, West Germany: Springer-Verlag, ix+215 pp.CrossRefGoogle Scholar
  72. Sergeev, V.A. and Malkov, M.V.: 1988, ‘Diagnostic of energetic electrons above the ionosphere’, Geoman. Aeron. 28, 549.Google Scholar
  73. Sergeev, V.A., Malkov, M. and Mursula, K.: 1993, ‘Testing the isotrop boundary algorithm method to evaluate the magnetic field configuration’, J. Geophys. Res. 98, 7609–7620.CrossRefADSGoogle Scholar
  74. Siscoe, G.L.: 1991, ‘What determines the size of the auroral oval, in Auroral Physics’, in C.-I. Meng, M.J. Rycroft and L.A. Frank, Cambridge University Press, New York, p. 159.Google Scholar
  75. Smith, M.F. and Lockwood, M.: 1996, Earth’s magnetospheric cusps, Rev. Geophys. 34, 233.CrossRefADSGoogle Scholar
  76. Takahashi, Y. and Fukunishi, H.: 2001, ‘The dynamics of the proton aurora in auroral break up events’, J. Geophys. Res. 106, 45–64.CrossRefADSGoogle Scholar
  77. Torr, M.R. et al.: 1995, A far ultraviolet imager for the international solar-terrestrial physics mission’, Space Sci. Rev. 71, 329.CrossRefADSGoogle Scholar
  78. Tsyganenko, N.A.: 1990, ‘Quantitative models of the magnetospheric magnetic field: methods and results’, Space Sci. Rev. 54, 75–186.CrossRefADSGoogle Scholar
  79. Vallance-Jones, A., Creutzberg, F., Gattinger, R.L., Harris, F.A.: 1982, ‘Auroral studies with a chain of meridian scanning photometers 1’. Observations of proton and electron aurora in magnetospheric substorms, J. Geophys. Res. 87, 4489.CrossRefADSGoogle Scholar
  80. Vo, H.B. and Murphree, J.S.: 1995, ‘A study of dayside auroral bright spots seen by the Viking auroral imager’, J. Geophys. Res. 100, 3649–3655.CrossRefADSGoogle Scholar
  81. Walker, R.J. and Russell, C.T.: 1995, ‘Solar-wind interactions with magnetized planets’, in M.G. Kivelson and C.T. Russell (eds), Introduction to Space Physics, Cambridge Univ. Press, Cambridge, p. 178.Google Scholar
  82. Woch, J. and Lundin, R.: 1992, ‘Magnetosheath plasma precipitation in the polar cusp and its control by the interplanetary magnetic field’, J. Geophys. Res. 97, 1421.CrossRefADSGoogle Scholar
  83. Yamauchi, M. and Lundin, R.: 2001, ‘Comparison of various cusp models with high- and low-resolution observations’, Space Sci. Rev. 95, 457.CrossRefADSGoogle Scholar
  84. Zhang, Y., Paxton, L., Immel, T.J., Frey, H.U. and Mende, S.B.: 2003, ‘Sudden solar wind dynamic pressure enhancements and dayside detached aurora: IMAGE and DMSP observations’, J. Geophys. Res. 108, (A4) 8OOl,doi:lO.lO29/2OO2JAOO9355.Google Scholar
  85. Zhou Xiaoyan and Tsurutani, B.T.: 1999, ‘Rapid intensification and propagation of the day side aurora: large scale interplanetary pressure pulses (fast shocks)’, Geophys. Res. Lett. 26, 1097–100.CrossRefADSGoogle Scholar
  86. Zwick, H.H. and Shepherd, G.G.: 1963, ‘Some observations of hydrogen line profiles in the aurora’, J. Atmospheri Terrest. Phys. 25, 604–607.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S. B. Mende
    • 1
  • H. U. Frey
    • 1
  • T. J. Immel
    • 1
  • J.-C. Gerard
    • 2
  • B. Hubert
    • 2
  • S. A. Fuselier
    • 3
  1. 1.Space Sciences LaboratoryUniversity of California BerkeleyBerkeleyUSA
  2. 2.University of LiègeLiègeBelgium
  3. 3.Lockheed-Martin Advanced Technology CenterPalo AltoUSA

Personalised recommendations