Advertisement

Nonlinear Aerodynamic Effects on Transonic LCO Amplitude of a Supercritical Airfoil

  • Lei Tang
  • D. D. Liu
  • P. C. Chen
Conference paper
Part of the Fluid Mechanics and its Applications book series (FMIA, volume 73)

Abstract

A CFD time-marching method, CFL3D v6, is employed to investigate the influences of viscosity, initial airfoil position, and initial perturbation on the amplitudes of the transonic limit cycle oscillations (LCO) of a supercritical airfoil. As expected, stronger aerodynamic nonlinearity leads to smaller LCO amplitudes, even a damped solution while weaker aerodynamic nonlinearity incurs larger LCO amplitudes, even a divergent solution.

Key words

transonic limit cycle oscillations supercritical airfoil CFD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edwards, J.W., Transonic shock oscillations and wing flutter calculated with an interactive boundary layer coupling method. Euromech-Colloquium 349 Simulation of Fluid-Structure Interaction in Aeronautics (Göttingen), 1996.Google Scholar
  2. 2.
    Cunningham Jr., A.M. & Meijer, J.J., Semi-empirical unsteady aerodynamics for modeling aircraft limit cycle oscillations and other nonlinear aeroelastic problems. International Forum on Aeroelasticity and Structural Dynamics (Manchester), 1995.Google Scholar
  3. 3.
    Chen, P.C., Sarhaddi, D. & Liu, D.D., Limit cycle oscillation studies of a fighter with external stores. AIAA-98-1727.Google Scholar
  4. 4.
    Mignolet, M.P., Liu, D.D., & Chen, P.C., On the nonlinear structural damping mechanism of the wing/store limit cycle oscillations. AIAA-99-1459.Google Scholar
  5. 5.
    http://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6.htmlGoogle Scholar
  6. 6.
    Knipfer, A., Schewe, G. & Wendt, V., Numerische und experimentelle Untersuchungen an einem schwingenden NLR 7301-Profil in transsonischer Stroemung, Teil 1: Flattern und erzwungene Schwingungen. DLR Bericht IB 232-98 J 05, 1998.Google Scholar
  7. 7.
    Roe, P.L., Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43, 357–372, 1981.MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Spalart, P. & Allmaras, S., A one-equation turbulence model for aerodynamic flows. AIAA-92-0439.Google Scholar
  9. 9.
    Weber, S., Jones, K.D., Ekaterinaris, J.A. & Platzer, M.F., Transonic flutter computations for the NLR7301 supercritical wing. Aerospace Science & Technology, 5, 293–304, 2001.zbMATHCrossRefGoogle Scholar
  10. 10.
    L. Tang, Bartels, R.E., Chen, P.C. & Liu, D.D., Numerical investigation of transonic limit cycle oscillations of a 2-D supercritical wing. Journal of Fluids and Structures, 17(1), 2002.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Lei Tang
    • 1
  • D. D. Liu
    • 1
  • P. C. Chen
    • 1
  1. 1.ZONA Technology, Inc.ScottsdaleUSA

Personalised recommendations