Advertisement

Transonic Flow Phenomena of the Cold Spray Deposition Process

  • Martin Rein
  • Ali Erdi-Betchi
  • Konstantin V. Klinkov
Part of the Fluid Mechanics and its Applications book series (FMIA, volume 73)

Abstract

The cold spray deposition process is an emerging technology for coating surfaces. Micron-sized particles are accelerated and transported to substrates by means of supersonic free jets. Upon impacting the substrate, particles stick to the surface and form coatings. In contrast to well-known thermal spray processes particles are not melted throughout the whole process, hence the prefix cold. In the cold spray process a number of different transonic flow regimes are encountered. Phenomena characteristic of the various transonic regimes will be introduced and discussed making reference to results obtained at the pilot facility for cold spray of the German Aerospace Center.

Key words

nozzle flows impinging supersonic free jets drag coefficient of particles in compressible flows particle impact multiphase flows 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alkhimov, A.P., Kosarev, V.F. & Papyrin, A.N., Sov. Phys. Dokl. 35, 1047–1049 (1990)ADSGoogle Scholar
  2. 2.
    Alkhimov, A.P., Nesterovich, N.I. & Papyrin, A.N., Sov. Phys. Dokl. 27, 219–226 (1982)Google Scholar
  3. 3.
    Boiko, V.M., Klinkov, K.V. & Poplavsky, S.V, Int. Conf. on Meth. of the Aerophys. Research (ICMAR-2000), Novosibirsk-Tomsk, Russia, July 2000, Part II, 25–30 (2000)Google Scholar
  4. 4.
    Donaldson, C.D. & Snedeker, R.S., J. Fluid Mech. 45 (part 2), 281–319 (1971)ADSCrossRefGoogle Scholar
  5. 5.
    Dunbar, L.E., Courtney, J.F. & McMillen, L.D, AIAA J. 13, 908–912 (1975)ADSCrossRefGoogle Scholar
  6. 6.
    Edney, B, FAA Report No. 115 (1968)Google Scholar
  7. 7.
    Gubanova, O.I., Lunev, V.V. & Plastinina, L.N., Fluid Dyn. 6, 298–301 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    Hackett, C.M. & Settles, G.S., AIAA paper no. 95-2207 (1995)Google Scholar
  9. 9.
    Henderson, C.B., AIAA J. 14, 707–708 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    Henderson, L.F, ZAMP, 17, 553–569 (1966)ADSCrossRefGoogle Scholar
  11. 11.
    Kalghatgi, G.T. & Hunt, B.L., Aero. Quart. 27, 164–185 (1976)Google Scholar
  12. 12.
    Lamont, P.J. & Hunt, B.L., J. Fluid Mech. 100, 471–511 (1980)ADSCrossRefGoogle Scholar
  13. 13.
    Rein, M., Eur. J. Mech., B/Fluids 14, 301–322 (1995)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Rudinger, G., J. Basic. Eng. 92, 165–172 (1970)CrossRefGoogle Scholar
  15. 15.
    Wilson, M.P.W. & Brunton, J.H., Nature 226, 538–541 (1970)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Martin Rein
    • 1
  • Ali Erdi-Betchi
    • 1
  • Konstantin V. Klinkov
    • 1
  1. 1.DLR — Institute of Aerodynamics and Flow TechnologyGöttingenGermany

Personalised recommendations