Advertisement

Numerical Investigation of Transonic Flutter and Modeling of Wind Tunnel Interference Effects

  • Breno M. Castro
  • Kevin D. Jones
  • Max F. Platzer
  • Stefan Weber
  • John A. Ekaterinaris
Part of the Fluid Mechanics and its Applications book series (FMIA, volume 73)

Abstract

Computational investigations of transonic limit-cycle flutter of the NLR 7301 supercritical airfoil using a thin-layer Navier-Stokes solver are presented. Results are given showing the effect of turbulence and transition modeling and of wind-tunnel interference. Comparisons are made with the experiments of Schewe and Deyhle. The results show that both viscous effects and wind tunnel interference effects are significant, and need to be correctly modeled in the computations.

Keywords

Wind Tunnel Suction Surface Tunnel Wall Porosity Parameter Laminar Separation Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castro, B. M., Ekaterinaris, J. A., and Platzer, M. F. (2002). Navier-stokes analysis of wind-tunnel interference on transonic flutter. AIAA Journal, 40:1269–1276.ADSCrossRefGoogle Scholar
  2. Castro, B. M., Jones, K. D., Ekaterinaris, J. A., and Platzer, M. F. (2001). Analysis of the effect of porous wall interference on transonic airfoil flutter. AIAA Paper No. 2001–2725.Google Scholar
  3. Ekaterinaris, J. A., Cricelli, A. S., and Platzer, M. F. (1994). A zonal method for unsteady, viscous, compressible airfoil flows. Journal of Fluids and Structures, 8:107–123.ADSCrossRefGoogle Scholar
  4. Ekaterinaris, J. A. and Menter, F. R. (1994). Computation of oscillating airfoil flows with one-and two-equation turbulence models. AIAA Journal, 32:2359–2365.ADSCrossRefGoogle Scholar
  5. Ekaterinaris, J. A., Sorensen, N. N., and Rasmussen, F. (1998). Numerical investigation of airfoil dynamic stall in simultaneous harmonic oscillatory and translatory motion. ASME Journal of Solar Energy Engineering, 120:75–83.CrossRefGoogle Scholar
  6. Gostelow, J. P., Melwani, N., and Walker, G. J. (1996). Effects of a streamwise pressure gradient on turbulent spot development. Journal of Turhomachinery, 118:737–747.CrossRefGoogle Scholar
  7. Knipfer, A., Schewe, G., and Wendt, V. (1998). Numerische und experimentelle Untersuchungen an einem schwingenden nlr7301-profil in transsonischer stroemung, teil 1: Flattern und erzwungene Schwingungen. DLR Bericht IB 232-98 J 05.Google Scholar
  8. Michel, R. (1957). Etude de la transition sur les profiles d’aile. ONERA Report 1/1578A.Google Scholar
  9. Mokry, M., Chan, Y. Y., and Jones, D. J. (1983). Two-dimensional wind tunnel wall interference. AGARDograph No. 281.Google Scholar
  10. Schewe, G. and Deyhle, H. (1996). Experiments on transonic flutter of a two-dimensional supercritical wing with emphasis on the non-linear effect. Proceedings of the Royal Aeronautical Society Conference on Unsteady Aerodynamics, London.Google Scholar
  11. Weber, S., Jones, K. D., Ekaterinaris, J. A., and Platzer, M. F. (2001). Transonic flutter computations for the NLR 7301 supercritical wing. Aerospace Science & Technology, 5:293–304.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Breno M. Castro
    • 1
  • Kevin D. Jones
    • 1
  • Max F. Platzer
    • 1
  • Stefan Weber
    • 2
  • John A. Ekaterinaris
    • 3
  1. 1.Naval Postgraduate SchoolMontereyUSA
  2. 2.MTU Aero Engine Design, Inc.Rocky HillUSA
  3. 3.Foundation for Research and Technology HellasHeraklionGreece

Personalised recommendations