Advertisement

Generalized Quantum Mechanics

Chapter
  • 57 Downloads
Part of the The University of Western Ontario Series in Philosophy of Science book series (WONS, volume 7)

Abstract

A convex scheme of quantum theory is outlined where the states are not necessarily the density matrices in a Hilbert space. The physical interpretation of the scheme is given in terms of generalized “impossibility principles”. The geometry of the convex set of all pure and mixed states (called a statistical figure) is conditioned by the dynamics of the system. This provides a method of constructing the statistical figures for non-linear variants of quantum mechanics where the superposition principle is no longer valid. Examples of that construction are given and its possible significance for the interrelation between quantum theory and general relativity is discussed.

Keywords

Pure State Quantum Logic Motion Group Affine Space Normal Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Segal, I. E.: Ann. Math. 48, 930 (1947).CrossRefGoogle Scholar
  2. 2.
    Birkhoff, G., von Neumann. J.: Ann. Math. 37, 823 (1936).CrossRefGoogle Scholar
  3. 3.
    Dähn, G.: Commun, math. Phys, 9, 192 (1968); 28, 109 (1972), 28; 123 (1972).CrossRefGoogle Scholar
  4. 4.
    Davies, E. B., Lewis, J.T.: Commun. math. Phys. 17, 239 (1970).CrossRefGoogle Scholar
  5. 5.
    Davies, E. B.: Commun. math. Phys. 15, 277 (1969); 19, 83 (1970); 22, 51 (1971).CrossRefGoogle Scholar
  6. 6.
    Edwards, C. M.: Commun. math. Phys. 16, 207 (1079); 20, 26 (1971); 24, 260 (1972).CrossRefGoogle Scholar
  7. 7.
    Flato, M., Sternheimer, D.: Commun. math. Phys. 14, 5 (1969).CrossRefGoogle Scholar
  8. 8.
    Giles, R.: J. Math. Phys, 11, 2139 (1970).CrossRefGoogle Scholar
  9. 9.
    Gunson, J.: Commun. math. Phys, 6, 262 (1967).CrossRefGoogle Scholar
  10. 10.
    Haag, R., Kastler, D.: J. Math. Phys. 5, 848 (1964).CrossRefGoogle Scholar
  11. 11.
    Hellwig, K. E., Kraus, K.: Commun. math. Phys. 11, 214 (1969); 16, 142(1970).CrossRefGoogle Scholar
  12. 12.
    Jauch, J. M., Piron, C.: Helv. Phys. Acta 42, 842 (1969).Google Scholar
  13. 13.
    Leiter, D.: Intern. J. Theor, Phys, 4, 83 (1971).CrossRefGoogle Scholar
  14. 14.
    Ludwig, G.: Z. Naturforsch. 22a, 1303 (1967); 22a, 1324 (1967).Google Scholar
  15. 15.
    Ludwig, G.: Commun. math. Phys. 4, 331 (1967); 9, 1 (1968); 26, 78 (1972).CrossRefGoogle Scholar
  16. 16.
    Mielnik, B.: Commun. math. Phys. 15, 1 (1969).CrossRefGoogle Scholar
  17. 17.
    Neumann, H.: Commun. math. Phys. 23, 100 (1971).CrossRefGoogle Scholar
  18. 18.
    Piron, C.: Helv. Phys. Acta 37, 439 (1964).Google Scholar
  19. 19.
    Pool, J. C. T.: Commun, math. Phys. 9, 118 (1968); 9, 212(1968).CrossRefGoogle Scholar
  20. 20.
    Sachs, M.: Intern. J. Theor, Phys, 4, 83 (1971).CrossRefGoogle Scholar
  21. 21.
    Stolz, P.: Commun. math. Phys, 11, 303 (1969); 23, 117 (1974).CrossRefGoogle Scholar
  22. 22.
    Gudder, S.: Commun. math. Phys, 29, 249 (1973).CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1978

Authors and Affiliations

There are no affiliations available

Personalised recommendations