Skip to main content

On the Use of Aromaticity Rules, Frontier Orbitals and Correlations Diagrams. Some Difficulties and Unsolved Problems

  • Chapter
Quantum Theory of Chemical Reactions

Part of the book series: Quantum Theory of Chemical Reactions ((QTCR,volume 1))

Abstract

The most usual difficulties encountered in the study of frontier-controlled reactions by approximate methods (aromaticity rules, frontier-orbital approximation and correlation diagram) are reviewed.

Since the discovery of the Woodward-Hoffmann rules [1], three approximate theoretical methods [1–4] have been extensively used by chemists for the study of chemical reactivity. These methods are based on the aromaticity rules [2], on the frontier orbital approximation [3], and on correlation diagrams [1]. The application of these methods, usually very simple, may sometimes presents serious difficulties. This paper is concerned with such cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. a) R.B. Woodward and R. Hoffmann, “The conservation of Orbital Symmetry”, Verlag Chemie, Academic Press, Weinheim 1970

    Google Scholar 

  2. b) Nguyen Trong Anh, “Les Regies de Woodward-Hoffmann”, Ediscience, Paris 1970

    Google Scholar 

  3. a) M.J.S. Dewar, “The MO Theory of Organic Chemistry”, McGraw-Hill, N.Y. 1969

    Google Scholar 

  4. b) M.J.S. Dewar and R.C. Dougherty, “The PMO Theory of Organic Chemistry”, Plenum Press, N.Y. 1975

    Google Scholar 

  5. c) H.E. Zimmerman, in “Pericyclic Reactions”, R.E. Lehr and A.P. Marchand Eds., Academic Press, N.Y. 1977, Vol. I, p. 53

    Google Scholar 

  6. a) K. Fukui, “Theory of Orientation and Stereoselection”, Springer-Verlag, Berlin, Heidelberg 1975

    Google Scholar 

  7. I. Fleming, “Frontier Orbitals and Organic Chemical Reactions”, Wiley, London 1976

    Google Scholar 

  8. b) R.G. Pearson, “Symmetry Rules for Chemical Reactions. Orbital Topology and Elementary Processes”, Wiley, Chichester 1976

    Google Scholar 

  9. Ref. lb, pp. 20, 146 and 156

    Google Scholar 

  10. Ref. 2a, p. 222

    Google Scholar 

  11. K.N. Houk, J.K. George and R.E. Duke, Jr., Tetrahedron, 30, 523 (1974)

    Article  CAS  Google Scholar 

  12. G.L. Closs and P.E. Pfeffer, J. Amer. Chem. Soc. 90, 2452 (1968)

    Article  CAS  Google Scholar 

  13. W. Carruthers, “Some modern methods of organic synthesis”, Cambridge University Press, Cambridge 1971, p. 214

    Google Scholar 

  14. a) R.A. Jackson, J. Chem. Soc. (B) 58 (1970)

    Google Scholar 

  15. b) E.A. Hill, J. Organomet. Chem. 222 (1975)

    Google Scholar 

  16. c) T. Clark and P.V.R. Schleyer, ibid. 156, 191 (1978)

    Google Scholar 

  17. P.C. Hiberty, J. Amer. Chem. Soc. 97, 5975 (1975)

    Article  CAS  Google Scholar 

  18. W.C. Herndon and L.H. Hall, Theor. Chim. Acta, 7, 4 (1967)

    Article  CAS  Google Scholar 

  19. R.J. Buenker and S.D. Peyerimhoff, Chem. Rev. 74, 127 (1974)

    Article  CAS  Google Scholar 

  20. E.R. Davidson, J. Chem. Phys. 57, 1999 (1972)

    Article  CAS  Google Scholar 

  21. L.Z. Stenkamp and E.R. Davidson, Theor. Chim. Acta 30, 283 (1973)

    Article  Google Scholar 

  22. E. R. Davidson and L.Z. Stenkamp; Intern, J. Quant. Chem. Symp. 10, 21 (1976)

    Article  CAS  Google Scholar 

  23. P.K. Mehrotra and R. Hoffmann, Theor. Chim. Acta 48, 301 (1978)

    Article  CAS  Google Scholar 

  24. R.J. Buenker, S.D. Peyerimhoff and K. Hsu, J. Amer. Chem. Soc. 93, 5005 (1971)

    Article  CAS  Google Scholar 

  25. C. Minot and Nguyen Trong Anh, Tetrahedron Lett. 3905 (1975)

    Google Scholar 

  26. E. Clementi, IBM Journal of Research and Development, 9, 2 (1965)

    Article  CAS  Google Scholar 

  27. In particular, the orbitals obtained for F- and Cl- with extended basis set [l8] should not be used in a perturbational scheme, the electron affinities for F and CI being respectively 3,48 and 3,69 [21]

    Google Scholar 

  28. In connection with this problem, it may be noted that if in the gas phase or in aprotic solutions, the HOAO of F- is higher than that of CI-, the order is reversed in protic solutions. Similarly there is a reversal of the LUAO level ordering for the Li+, Na+ pair, when the solvent is changed [l7]. Therefore, the equivalences suggested by Klopman [21], hard cation + hard anion = charge controlled reaction, soft cation + soft anion = frontier controlled reaction, hold only for protic solutions or for reactions with aggregates [l7]

    Google Scholar 

  29. G. Klopman, J. Amer. Chem. Soc. 90, 223 (1968)

    Article  CAS  Google Scholar 

  30. J.A. Berson and L. Salem, J. Amer. Chem. Soc. 94, 8917 (1972)

    Article  CAS  Google Scholar 

  31. W.T. Borden and L. Salem, ibid. 95, 932 (1973)

    Google Scholar 

  32. S. David, O. Eisenstein, W.J. Hehre, L. Salem and R. Hoffmann, ibid. 95, 3806 (1973)

    Google Scholar 

  33. J.A. Berson, Accts. Chem. Res. 5, 405 (1972)

    Article  Google Scholar 

  34. L. Salem, “Chemical and Biochemical Reactivity”, The Jerusalem Sympsoia on Quantum Chemistry and Biochemistry VI, The Isreal Academy of Sciences and Humanities, Jerusalem 1974, p. 329

    Book  Google Scholar 

  35. K. Hsu, R.J. Buenker and S.D. Peyerimhoff, J. Amer. Chem, Soc. 93, 2117 (1971)

    Article  Google Scholar 

  36. For an example, see: Y. Ellinger and J. Serre, Int. J. Quant. Chem. 7S, 217 (1973)

    Google Scholar 

  37. The reactive state for the Paterno-Buchi reaction is most probably a n, π* triplet and not a π, π* singlet [26]. However, the main point of our argument is that experimentally the thermal reaction does not occur

    Google Scholar 

  38. D.R. Arnolds, “Adv. in Photochemistry”, W.A. Noyes, Jr., G.S. Hammond, J.N. Pitts, Jr., Eds. Interscience, N.Y. 1968, Vol. 6, p. 301

    Chapter  Google Scholar 

  39. Réf. la, p. 32. See also: J. Langlet and J.P. Malrieu, J. Amer. Chem. Soc, 94, 7254 (1972)

    Article  CAS  Google Scholar 

  40. Note also that in intermolecular reactions, for large internuclear distances, molecular orbitals with reduced (broken) symmetry may give a lower total energy than symmetry-adapted MO’s 29, Again this difficulty may be avoided by considering the reagents in their activated forms

    Google Scholar 

  41. J.M. Melvey and G. Berthier, Chem. Phys. Lett. 41, 476 (1976)

    Article  Google Scholar 

  42. J. Paldus and A. Veillard, ibid. 50, 6 (1977)

    Google Scholar 

  43. Ref. la, pp. 34, 76–78

    Google Scholar 

  44. E.A. Halevi, Nouv. J. Chim. 1, 229 (1977)

    CAS  Google Scholar 

  45. It is easy to see that the reaction then resembles a (4a+2a) cycloaddition with the 2–3 fragment playing the role of the 2e component

    Google Scholar 

  46. J.J.C. Mulder, J. Amer. Chem. Soc. 99, 5177 (1977)

    Article  CAS  Google Scholar 

  47. Ref, la, p. 31

    Google Scholar 

  48. L. Salem, J. Amer. Chem. Soc, 96, 3486 (1974)

    Article  CAS  Google Scholar 

  49. L. Salem, Israel J. Chem. 14, (1975)

    Google Scholar 

  50. L. Salem, Science 191, 822 (1976)

    Article  CAS  Google Scholar 

  51. W.G. Dauben, L. Salem and N.J. Turro, Accts. Chem. Res. 13, 41 (1975)

    Article  Google Scholar 

  52. C. Minot, Nguyen Trong Anh and L. Salem, J. Amer. Chem. Soc. 98, 2678 (1976)

    Article  CAS  Google Scholar 

  53. F.D. Mango and J.H. Schachtschneider, J. Amer. Chem. Soc, 89, 2484 (1967)

    Article  CAS  Google Scholar 

  54. See, for an example: P. Heimbach, Angew. Chem. Intern, Ed. 12, 975 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 D. Reidel Publishing Company

About this chapter

Cite this chapter

Anh, N.T. (1979). On the Use of Aromaticity Rules, Frontier Orbitals and Correlations Diagrams. Some Difficulties and Unsolved Problems. In: Daudel, R., Pullman, A., Salem, L., Veillard, A. (eds) Quantum Theory of Chemical Reactions. Quantum Theory of Chemical Reactions, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9516-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9516-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9518-5

  • Online ISBN: 978-94-009-9516-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics