Skip to main content

The Mechanism of Carbonic Anhydrase — A Solvation Problem?

  • Conference paper
Catalysis in Chemistry and Biochemistry Theory and Experiment

Part of the book series: The Jerusalem Symposia on Quantum Chemistry and Biochemistry ((JSQC,volume 12))

  • 87 Accesses

Abstract

The catalytic activity of the enzyme carbonic anhydrase has been studied by statistical and quantum mechanical methods. The coordination number for the zinc ion in the active site has been found to be five, three histidine residues and two water molecules, with another water molecule very close to the first solvation sphere. The zinc hydroxide mechanism for the enzymatic reaction is supported by the results obtained from a quantum mechanical study of the reaction 0H- + CO2 ⇄ HCO -3 , indicating that the specific solvation in the active cleft of carbonic anhydrase may be the clue to the catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Lindskog, L.E. Henderson, K.K. Kannan, A. Liljas, P.O. Nyman and B. Strandberg, 1971, Enzymes, 5, pp. 587.

    Article  CAS  Google Scholar 

  2. K.K. Kannan, B. Notstrand, K. Fridborg, S. Lovgren, A. Ohlsson and M. Petef, 1975, Proc.Natl.Acad.Sci. USA, 72, pp. 51.

    Article  CAS  Google Scholar 

  3. J.E. Coleman, 1976, J.Biol.Chem., 242, pp. 5212.

    Google Scholar 

  4. R.G. Khalifah, 1971, J.Biol.Chem., 246, pp. 2561.

    CAS  Google Scholar 

  5. B. Jonsson, G. Karlstrom and H. Wennerstrom, 1975, Chem.Phys. Letters, 30, pp. 58.

    Article  CAS  Google Scholar 

  6. B. Jonsson and B. Nelander, Chem.Phys., 1977, 25, pp. 263.

    Article  CAS  Google Scholar 

  7. B. Jonsson, G. Karlstrom, H. Wennerstrom and B. Roos, 1976, Chem.Phys. Letters, 41, pp. 317.

    Article  CAS  Google Scholar 

  8. B. Jonsson, G. Karlstrom, H. Wennerstrom, S. Forsen, B. Roos and J. Almlof, 1977, J.Am.Chem.Soc., 99, pp. 4628.

    Article  CAS  Google Scholar 

  9. B. Jonsson, G. Karlstrom and H. Wennerstrom, 1978, J.Am.Chem. Soc., 100, pp. 1658.

    Article  CAS  Google Scholar 

  10. E. Clementi, G. Corongiu, B. Jonsson and S. Romano; Monte Carlo simulation of the water structure around Zn++. To be published.

    Google Scholar 

  11. B. Jonsson and H. Wennerstrom, 1978, Biophys.Chem., 7, pp. 285.

    Article  CAS  Google Scholar 

  12. E. Clementi, G. Corongiu, B. Jonsson and S. Romano, FEBS Letters, in press.

    Google Scholar 

  13. S.H. Koenig and R.D. Brown, 1973, Biochim.Biophys.Res.Commun., 53, pp. 624.

    Article  CAS  Google Scholar 

  14. R.G. Khalifah, 1973, Proc.Nat1.Acad.Sci. US, 70, pp. 1986.

    Article  CAS  Google Scholar 

  15. S. Lindskog and J.E. Coleman, 1973, Proc.Natl.Acad.Sci. USA, 70, pp. 2505.

    Article  CAS  Google Scholar 

  16. M. v. Smulochowski, 1917, Z.Physik.Chem., 92, pp. 129.

    Google Scholar 

  17. B-H. Jonsson, H. Steiner and S. Lindskog, 1976, FEBS Letters, 64, pp. 310.

    Article  CAS  Google Scholar 

  18. Gmelin, 1956, “Handbuch der anorganischen Chemie”, 8 auflage, 32, pp. 720.

    Google Scholar 

  19. H. Ohtaki, T. Yamaguchi and M. Maeda, 1977, Essays Anal.Chem., pp. 163.

    Google Scholar 

  20. O. Matsouka, E. Clementi and M. Yoshimine, 1976, J.Chem.Phys., 64, pp. 1351. H2O-H2O interaction potential.

    Google Scholar 

  21. E. Clementi, F. Cavallone and R. Scordamaglia, 1977, J.Am.Chem. Soc,. 99, pp. 5531; G. Bolis and E. Clementi, 1977 ibid, 99, pp. 5550; G. Ranghino and E. Clementi, to be published. H20-amino acid potentials.

    Google Scholar 

  22. G.C. Lie, E. Clementi and M. Yoshimine, 1976, J.Chem.Phys., 64, pp. 2314.

    Article  CAS  Google Scholar 

  23. P. Woolley, 1975, Nature, 258, pp. 677.

    Article  CAS  Google Scholar 

  24. B.R.W. Pinsent, L. Pearson and F.J.W. Roughton, 1956, Trans. Faraday Soc., 52, pp. 1512.

    Article  CAS  Google Scholar 

  25. C.P. Baskin, C.F. Bender, C.W. Bauschlicher Jr and H.F. Schaefer III, 1974, J.Am.Chem. Soc., 96, pp. 2709.

    Article  CAS  Google Scholar 

  26. E. Magid and B.O. Turbeck, 1968, Biochim.Biophys. Acta, 165, pp. 515.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 D. Reidel Publishing Company

About this paper

Cite this paper

Jönsson, B. (1979). The Mechanism of Carbonic Anhydrase — A Solvation Problem?. In: Pullman, B. (eds) Catalysis in Chemistry and Biochemistry Theory and Experiment. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9513-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9513-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9515-4

  • Online ISBN: 978-94-009-9513-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics