Skip to main content

Abstract

The biochemical importance of riboflavin (la, R=-CH2(CHOH)4CH2OH, T=Me) is well known; numerous studies have shown that its role is a redox one, and in particular with net hydride ion transfer from pyridine nucleotides eg NADH to la [1–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ed. H. Kamin “Flavins and Flavoproteins,” Butterworths, London, 1971.

    Google Scholar 

  2. Ed. T. P. Singer, “Flavins and Flavoproteins,” Elsevier, Amsterdam, 1976.

    Google Scholar 

  3. C. Walsh, Ann. Rev. Biochem., 1978, 47881.

    Article  CAS  Google Scholar 

  4. J. L. Fox and G. Toll in, Biochemistry, 1966, 5, 3865, 3874.

    Article  CAS  Google Scholar 

  5. C. Kernel, T. W. Chan and T. C. Bruice, J. Amer. Chem. Soc., 1977, 99, 7272.

    Article  Google Scholar 

  6. B. Pullman and A. Pullman, Proc. Nat. Acad. Sci. USA, 1959, 45, 136.

    Article  CAS  Google Scholar 

  7. G. Karreman, Bull. Math. Biophys., 1961, 23, 55.

    Article  CAS  Google Scholar 

  8. Pill-Soon Song and M. Sun, Jerusalem Symposium on Quantum Chem. Biochem., 1974, 6, 407;

    Google Scholar 

  9. Pill-Soon Song and M. Sun, Biochem. React. Proc. Int. Symp., 1973.

    Google Scholar 

  10. Pill-Soon Song, J. Phys. Chem., 1968, 72, 536.

    Article  Google Scholar 

  11. R. Norrestam, P. Kierkegaard, B. Stensland and L. Torbjornsson, J. C. S. Chem. Comm., 1969, 1250.

    Google Scholar 

  12. B. Graebe, Acta. Chem. Scand., 1972, 26, 4084

    Article  Google Scholar 

  13. B. Graebe, Acta. Chem. Scand., 1974, 28A, 363 Biopolymers, Symposia, No. 1, 1964, 283.

    Google Scholar 

  14. M. Sun and Pill-Soon Song, Biochemistry, 1973, 12, 4663.

    Article  CAS  Google Scholar 

  15. R. F. Stewart and L. H. Jensen, Acta Cryst., 1967, 23, 1102.

    Article  CAS  Google Scholar 

  16. R. Norrestam, B. Stensland and E. Soderberg, Acta Cryst., 1972, B28, 659.

    CAS  Google Scholar 

  17. C. J. Fritchie, Acta Cryst., 1975, B31, 802.

    Article  Google Scholar 

  18. R. Norrestam and M. V. Glehn, Acta Cryst., 1972, B28, 434.

    Article  CAS  Google Scholar 

  19. M. H. Palmer, R. H. Findlay, S. M. F. Kennedy, W. Moyes and J. D. Nisbet, “Quantum Chemistry — The State of the Art, ”Ed. V. R. Saunders and J. Brown, Publ. Science Research Council, 1975, London, p. 229; see also references therein.

    Google Scholar 

  20. M. H. Palmer, R. H. Findlay and A. J. Gaskell, J. Chem. Soc. Perkin II, 1974, 420.

    Google Scholar 

  21. F. Muller, personal communication. It has also been observed that the oxidised form (l) 1H nmr spectra give shifts on polymethyl substitution which are best understood in terms of non-planarity; see

    Google Scholar 

  22. H. J. Grande, C. G. van Schagen, T. Jarbandhan and F. Muller, Helv. Chim. Acta, 1977, 60, 348.

    Article  CAS  Google Scholar 

  23. F. P. Colonna, G. Distefano, V. Galasso, K. J. Irgolic, C. E. King and G. C. Pappalardo, J. Organomet. Chem., 1978, 146, 235.

    Article  CAS  Google Scholar 

  24. T. J. O’Donnell, P. R. LeBreton and L. L. Simpson, J. Phys. Chem., 1978, 82, 343.

    Article  Google Scholar 

  25. I. Kulakowska, M. Geller, B. Lesyng and K. L. Wierzchowski, Biochim. Biophys. Acta, 1974, 361, 119.

    CAS  Google Scholar 

  26. A. Pullman in “Quantum Aspect s of Heterocyclic Compounds in Chemistry and Biochemistry.” The Jerusalem Symposia on Quantum Chemistry and Biochemistry, Volume 2, March 1969; published Academic Press, 1970.

    Google Scholar 

  27. The photoelectron spectra of a series of flavin molecules including Id and 5b have been obtained independently by workers in Amsterdam. There is substantial a greement for the I P’s of lb. Their tentative assignment of IP1 and IP2 in the 10-methyl compound (lb) to linear combinations LPN±LPO on the basis of CNDO-2 calculations are not borne out by the present work. We are grateful to them for access to unpublished results.

    Google Scholar 

  28. F. Muller in “Flavins and Flavoproteins,” ed. H. Kamin, Butterworths, London, p. 363.

    Google Scholar 

  29. K. H. Dudley, A. Ehrenberg, P. Hemmerich and F. Muller, Helv. Chim. Acta, 1964, 47, 1354.

    Article  CAS  Google Scholar 

  30. F. Möller, L. E. G. Eriksson and A. Ehrenberg, Eur. J. Biochem., 1970, 12, 93; F. Möller, P. Hemmerich, A. Ehrenberg, G. Palmer and V. Massey, ibid., 1970, 14, 185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 D. Reidel Publishing Company

About this paper

Cite this paper

Palmer, M.H., Platenkamp, R.J. (1979). Ab Initio Molecular Orbital Studies of the Flavins. In: Pullman, B. (eds) Catalysis in Chemistry and Biochemistry Theory and Experiment. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9513-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9513-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9515-4

  • Online ISBN: 978-94-009-9513-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics