Skip to main content

Abstract

Geochemistry is simply defined as a study of the chemistry of the earth and its component parts. The main tasks of the pure geochemist are: (i) to determine the abundances of the elements and their isotopes in the earth and (ii) to study the distribution and migration of different elements in the various components of the earth (rocks, minerals, air, oceans, etc.). The science of geochemistry is very young and has largely developed during the present century. The application of geochemistry to prospecting is even younger, dating from pioneering work carried out in the USSR in the 1930’s. Further developments took place in North America and elsewhere in the 1940’s, but it was not until the 1950’s that geochemistry really became the common and important prospecting tool it is today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Bibliography

  • Adler, I. (1966). X-ray Emission Spectrography in Geology, Elsevier Publishing Company, Amsterdam, 258 pp.

    Google Scholar 

  • Ahren, L. H. (1950). Spectrochemical Analysis, Addison-Wesley Press Inc, Cambridge, Mass., 269 pp.

    Google Scholar 

  • Ahren, L. H. (1965). Distribution of the Elements in Our Planet, McGraw-Hill Book Co., New York, 110 pp.

    Google Scholar 

  • Allan, R. J. (1971). Lake sediment: a medium for regional geochemical exploration of the Canadian Shield, C.I.M. Bull., 64, 43–59.

    Google Scholar 

  • Allan, R. J., Cameron, E. M. and Durham, C. C. (1973). Reconnaissance geochemistry using lake sediments on a 36000 square mile area of the northwestern Canadian Shield, Geol. Surv. Canada Paper 72-50.

    Google Scholar 

  • Almond, H. (1955). Rapid field and laboratory method for the determination of copper in soil and rocks, U.S.G.S. Bull. 1036A, 1–8.

    Google Scholar 

  • Armour-Brown, A. and Nichol, I. (1970). Regional geochemical reconnaissance and the location of metallogenic provinces, Econ. Geol., 65, 312–330.

    Article  Google Scholar 

  • Baas Becking, L. G. M. and Moore, D. (1961). Biogenic sulphides, Econ. Geol., 56, 259–272.

    Article  Google Scholar 

  • Barsukov, V. L. (1957). The geochemistry of tin, Geochemistry, 1, 41–51.

    Google Scholar 

  • Basham, I. R. and Easterbrook, G. D. (1977). Alpha-particle autoradiography of geological specimens by use of cellulose nitrate detectors, Trans. Instn. Min. Metall., Lond., 86, B96–B98.

    Google Scholar 

  • Bates, R. G. (1964). Determination of pH—Theory and Practice, John Wiley and Sons, New York, 435 pp.

    Google Scholar 

  • Beck, L. S. and Gingrich, J. E. (1976). Track etch orientation survey in the Cluff Lake area, northern Saskatchewan, C.I.M. Bull., 69, 105–109.

    Google Scholar 

  • Beus, A. A. and Sitnin, A. A. (1972). Geochemical specialization of magmatic complexes as criteria for the exploration of hidden deposits, 24th Intern. Geol. Congr., Montreal, 6, 101–105.

    Google Scholar 

  • Bloom, H. (1955). A field method for the determination of ammonium citrate soluble heavy metals in soils and alluvium, Econ. Geol., 50, 533–541.

    Article  Google Scholar 

  • Bloomfield, K., Reedman, J. H. and Tether, J. G. G. (1971). Geochemical exploration of carbonatite complexes in eastern Uganda, Geochem. Explor., C.I.M. Spec. 11, 85–102.

    Google Scholar 

  • Bolviken, B. and Lag, J. (1977). Natural heavy-metal poisoning of soils and vegetation: an exploration tool in glaciated terrain, Trans. Instn. Min. Metall., Lond., 86, B173–B180.

    Google Scholar 

  • Bolviken, B. and Sinding-Larsen, R. (1973). Total error and other criteria in the interpretation of stream sediment data, Geochem. Explor. 1972, I.M.M., Lond., 285–295.

    Google Scholar 

  • Bowie, S. H. U., Bisby, H., Burke, K. C. and Hale, F. H. (1960). Electronic instruments for detecting and assaying beryllium ores, Trans. Instn. Min. Metall., Lond., 69, 345–359.

    Google Scholar 

  • Bowie, S. H. U., Darnley, A. G. and Rhodes, J. R. (1965). Portable radioisotope X-ray fluorescence analyser, Trans. Instn. Min. Metall., Lond., 74, 361–379.

    Google Scholar 

  • Boyle, R. W. and Lynch, J. J. (1968). Speculations on the source of zinc, cadmium, lead, copper and sulphur in Mississippi Valley and similar types of lead-zinc deposits, Econ. Geol., 63, 421–422.

    Article  Google Scholar 

  • Brabec, D. and White, W. H. (1971). Distribution of copper and zinc in rocks of the Guichon Creek batholith, British Columbia, Geochem. Explor., C.I.M. Spec. 11, 291–297.

    Google Scholar 

  • Brade-Birks, S. G. (1966). Good Soil, English Universities Press Ltd., London, 304 pp.

    Google Scholar 

  • Britton, H. T. (1955). Hydrogen Ions, Chapman and Hall, London, 489 pp.

    Google Scholar 

  • Brooks, R. R. (1972). Geobotany and Biogeochemistry in Mineral Exploration, Harper and Row, New York, 290 pp.

    Google Scholar 

  • Brown, B. W. and Hilchey, G. R. (1974). Sampling and analysis of geochemical materials for gold, Geochem. Explor. 1974, A.E.G. Spec. Pub. No. 2, Elsevier Scientific Publishing Co., Amsterdam, 683–690.

    Google Scholar 

  • Buckman, H. O. and Brady, N. C. (1969). The Nature and Properties of Soils, Macmillan, New York.

    Google Scholar 

  • Cameron, E. M. (1977). Geochemical dispersion in lake waters and sediments from massive sulphide mineralization, Agricola Lake area, Northwest Territories, J. Geochem. Explor., 6, 327–348.

    Article  Google Scholar 

  • Cameron, E. M., Siddeley, G. and Durham, C. C. (1971). Distribution of ore elements in rocks for evaluating ore potential: nickel, copper, cobalt and sulphur in ultramafic rocks of the Canadian Shield, Geochem. Explor., C.I.M. Spec. 11, 298–314.

    Google Scholar 

  • Cannon, H. L. (1955). Geochemical relations of zinc-bearing peat to the Lockport Dolomite, Orleans County, New York, U.S.G.S. Bull., 1000-D, 119–185.

    Google Scholar 

  • Cannon, H. L. (1960). Botanical prospecting for ore deposits, Science, 132(3427), 591–598.

    Article  Google Scholar 

  • Carpenter, R. H., Pope, T. A. and Smith, R. L. (1975). Fe-Mn oxide coatings in stream sediment geochemical surveys, J. Geochem. Explor., 4, 349–363.

    Article  Google Scholar 

  • Carroll, D. (1970). Rock Weathering, Plenum Press, New York, 203 pp.

    Google Scholar 

  • Chaffee, M. A. and Hessin, T. D. (1971). An evaluation of geochemical sampling in the search for concealed ‘porphyry’ copper-molybdenum deposits on sediments in Southern Arizona, Geochem. Explor., C.I.M. Spec. 11, 401–409.

    Google Scholar 

  • Chakrabarti, A. K. and Solomon, P. J. (1971). A geochemical case history of the Rajburi antimony prospect, Thailand, (abs), Geochem. Explor., C.I.M. Spec. 11, 121.

    Google Scholar 

  • Chapman, R. P. (1976). Limitations of correlation and regression analysis in geochemical exploration, Trans. Instn. Min. Metall., Lond., 85, B279–B283.

    Google Scholar 

  • Chowdhury, A. N. and Bose, B. B. (1971). Role of ‘humus matter’ in the formation of geochemical anomalies, Geochem. Explor., C.I.M. Spec. 11, 410–413.

    Google Scholar 

  • Clarke, W. B. and Kugler, G. (1973). Dissolved helium in groundwater: a possible method for uranium and thorium prospecting, Econ. Geol., 68, 243–251.

    Article  Google Scholar 

  • Coope, J. A. (1973). Geochemical prospecting for porphyry copper-type mineralization—a review, J. Geochem. Explor., 2, 81–102.

    Article  Google Scholar 

  • Cox, R. (1974). Geochemical soil surveys in exploration for nickel-copper sulphides at Pioneer, near Norseman, Western Australia, Geochem. Explor. 1974, A.E.G. Spec. Pub. No. 2, Elsevier Scientific Publishing Co., Amsterdam, 437–460.

    Google Scholar 

  • Craven, C. A. U. (1954). Statistical estimation of the accuracy of assaying, Trans. Instn. Min. Metall., Lond., 63, 551–563.

    Google Scholar 

  • Cruft, E. F. (1964). Trace element determinations in soils and sediments by an internal standard spectrographic technique, Econ. Geoi, 59, 458–464.

    Article  Google Scholar 

  • Dall’Aglio, M. (1971). Comparison between hydrogeochemical and stream sediment methods in prospecting for mercury, Geochem. Explor., C.I.M. Spec. 11, 126–131.

    Google Scholar 

  • Davenport, P. H. and Nichol, I. (1973). Bedrock geochemistry as a guide to areas of base metal potential in volcano-sedimentary belts of the Canadian shield, Geochem. Explor. 1972, I.M.M., Lond., 45–57.

    Google Scholar 

  • Day, F. H. (1963). The Chemical Elements in Nature, George G. Harrap and Co., London, 372 pp.

    Google Scholar 

  • Debnam, A. H. and Webb, J. S. (1960). Some geochemical anomalies in soil and stream sediment related to beryl pegmatites in Rhodesia and Uganda, Trans. Instn. Min. Metall., Lond., 69, 329–344.

    Google Scholar 

  • De Geoffroy, J., Wu, S. M. and Heins, R. W. (1967). Geochemical coverage by spring sampling method in the southwest Wisconsin zinc area, Econ. Geol., 62, 679–697.

    Article  Google Scholar 

  • De Geoffroy, J., Wu, S. M. and Heins, R. W. (1968). Selection of drilling targets from geochemical data in southwest Wisconsin zinc area, Econ. Geol., 63, 787–795.

    Article  Google Scholar 

  • Dolezal, J., Povondra, P. and Sulcek, Z. (1968). Decomposition Techniques in Inorganic Analysis (transl. from Czech), Iliffe Books Ltd, London, 224 pp.

    Google Scholar 

  • d’Orey, F. L. C. (1975). Contribution of termite mounds to locating hidden copper deposits, Trans. Instn. Min. Metall., Lond., 84, B150–B151.

    Google Scholar 

  • Dubov, R. I. (1973). A statistical approach to the classification of geochemical anomalies, Geochem. Explor. 1972, I.M.M., Lond., 275–284.

    Google Scholar 

  • Dyck, W. (1976). The use of helium in mineral exploration, J. Geochem. Explor., 5, 3–20.

    Article  Google Scholar 

  • Ewing, Galen W. (1969). Instrumental Methods of Chemical Analysis, McGraw-Hill Book Co., New York, 627 pp.

    Google Scholar 

  • Farrell, B. L. (1974). Fluorine, a direct indicator of fluorite mineralization in local and regional soil geochemical surveys, J. Geochem. Explor., 3, 227–244.

    Article  Google Scholar 

  • Finklin, W. H. (1970). A rapid method for the determination of fluoride in rocks using an ion-selective electrode, U.S. Geol. Surv. Prof. Paper 700-C, C186–C188.

    Google Scholar 

  • Fleischer, M. and Robinson, W. O. (1963). Some problems of the geochemistry of fluorine, Roy. Soc. of Canada, Spec. Pub. No. 6, 58–75.

    Google Scholar 

  • Flinter, B. H. (1971). Tin in acid granitoids: the search for a geochemical scheme of mineral exploration, Geochem. Explor., C.I.M. Spec. 11, 323–330.

    Google Scholar 

  • Forbes, E. A., Posner, A. M. and Quirk, J. P. (1976). The specific adsorption of divalent Cd, Co, Cu, Pb, and Zn on goethite, J. Soil Sci, 27, 154–166.

    Article  Google Scholar 

  • Foster, J. R. (1973). The efficiency of various digestion procedures on the extraction of metals from rocks and rock-forming minerals, C.I.M. Bull., 66(736), 85–92.

    Google Scholar 

  • Fraser, D. C. (1961). Organic sequestration of copper, Econ. Geol., 56, 1063–1078.

    Article  Google Scholar 

  • Friedrich, G. H. and Hawkes, H. E. (1966). Mercury as an ore guide in the Pachuca-Real del Monte district, Hidalgo, Mexico, Econ. Geol., 61, 744–753.

    Article  Google Scholar 

  • Friedrich, G. H. and Pluger, W. L. (1971). Geochemical prospecting for barite and fluorite deposits, Geochem. Explor., C.I.M. Spec. 11, 151–156.

    Google Scholar 

  • Garrels, R. M. (1960). Mineral Equilibria at Low Temperature and Pressure, Harper and Row, New York, 254 pp.

    Google Scholar 

  • Garrels, R. M. and Christ, C. L. (1965). Minerals, Solutions and Equilibria, Harper and Row, New York, 450 pp.

    Google Scholar 

  • Garrett, R. G. (1971). The dispersion of copper and zinc in glacial overburden at the Louvem deposit, Val d’Or, Quebec, Geochem. Explor., C.I.M. Spec. 11, 157–158.

    Google Scholar 

  • Garrett, R. G. (1973). Regional geochemical study of Cretaceous acidic rocks in the northern Canadian Cordillera as a tool for broad mineral exploration, Geochem. Explor. 1972, I.M.M., Lond., 203–219.

    Google Scholar 

  • Ginzburg, I. I. (1960). Principles of Geochemical Prospecting (translation), Pergamon Press, London, 311 pp.

    Google Scholar 

  • Goldschmidt, V. M. (1954). Geochemistry, Clarendon Press, Oxford, 730 pp.

    Google Scholar 

  • Govett, G. J. S. (1960). Geochemical prospecting for copper in Northern Rhodesia, Rep. 21st Intern. Geol. Congr., Part 2, Geological results of applied geochemistry and geophysics, 44–56.

    Google Scholar 

  • Govett, G. J. S. and Goodfellow, W. D. (1975). Use of rock geochemistry in detecting blind sulphide deposits: a discussion, Trans. Instn. Min. Metall., Lond., 84, B134–B140.

    Google Scholar 

  • Green, J. (1959). Geochemical table of the elements for 1959, Geol. Soc. America Bull., 70, 1127–1184.

    Article  Google Scholar 

  • Grim, R. E. (1953). Clay Mineralogy, McGraw-Hill Book Co., New York, 396 pp.

    Google Scholar 

  • Hansuld, J. A. (1966). Eh and pH in geochemical exploration, C.I.M. Bull., 59, 315–322.

    Google Scholar 

  • Harden, G. and Tooms, J. S. (1964). Efficiency of the potassium bisulphate fusion in geochemical analysis, Trans. Instn. Min. Metall., Lond., 73, 129–141.

    Google Scholar 

  • Harman, H. H. (1960). Modern Factor Analysis, University of Chicago Press, 469 pp.

    Google Scholar 

  • Hawkes, H. E. (1954). Geochemical prospecting investigations in the Nyeba lead-zinc district, Nigeria, U.S.G.S. Bull. 1000-B, 51–103.

    Google Scholar 

  • Hawkes, H. E. (1957). Principles of geochemical prospecting, U.S.G.S. Bull. 1000-F, 225–355.

    Google Scholar 

  • Hawkes, H. E. (1976). The downstream dilution of stream sediment anomalies, J. Geochem. Explor., 5, 345–358.

    Article  Google Scholar 

  • Hawkes, H. E. and Webb, J. S. (1962). Geochemistry in Mineral Exploration, Harper and Row, New York, 415 pp.

    Google Scholar 

  • Hesp, W. R. (1971). Correlations between the tin content of granitic rocks and their chemical and mineralogical composition, Geochem. Explor., C.I.M. Spec. 11, 341–353.

    Google Scholar 

  • Hoag, R. B. and Webber, G. R. (1976). Hydrogeochemical exploration and sources of anomalous waters, J. Geochem. Explor., 5, 39–57.

    Article  Google Scholar 

  • Hoffman, S. J. (1977). Talus fine sampling as a regional geochemical exploration technique in mountainous regions, J. Geochem. Explor., 6, 349–360.

    Article  Google Scholar 

  • Hoffman, S. J. and Fletcher, W. K. (1976). Reconnaissance geochemistry of Nechaka plateau, British Columbia, using lake sediments, J. Geochem. Explor., 5, 101–114.

    Article  Google Scholar 

  • Horizon Magazine, (1959). A flower that led to a copper discovery, R.S.T. Company Magazine, 35–39.

    Google Scholar 

  • Hornbrook, E. H. W. (1969). Biogeochemical prospecting for molybdenum in west-central British Columbia, Geol. Surv. Canada Paper 68–56.

    Google Scholar 

  • Howarth, R. J. and Lowenstein, P. L. (1971). Sampling variability of stream sediments in broad-scale regional geochemical reconnaissance, Trans. Instn. Min. Metall., Lond., 80, B363–B372.

    Google Scholar 

  • Hunt, C. B. (1972). The Geology of Soils, W. H. Freeman & Co., San Franscisco, 344 pp.

    Google Scholar 

  • Hunt, E. C., North, A. A. and Wells, R. A. (1955). Application of paper chromatographic methods of analysis to geochemical prospecting, The Analyst, 80, 172–194.

    Article  Google Scholar 

  • Hyvarinen, L., Kauranne, K. and Yletyinen, V. (1973). Modern boulder tracing in prospecting. In Prospecting in Areas of Glacial Terrain, I.M.M., Lond., 87–95.

    Google Scholar 

  • James, C. H. (1957). The geochemical dispersion of arsenic and antimony related to gold mineralization in Southern Rhodesia, Tech. Comm., No. 12, Applied Geochemistry Research Group, Imperial College, London.

    Google Scholar 

  • Jedwab, J. (1955). Granites à deux micas de Guehenno et de La Villeder (Morbihan-France), Bull. de La Loc. Belge de Geol., 64, 526–534.

    Google Scholar 

  • Jonasson, I. R. and Sangster, D. F. (1974). Variation in the mercury content of sphalerite from some Canadian sulphide deposits, Geochem. Explor. 1974, A.E.G. Spec. Pub. No. 2, Elsevier Scientific Publishing Co., Amsterdam.

    Google Scholar 

  • Kauranne, L. K. (1959). Pedogeochemical prospecting in glaciated terrain: Finland, Comm. Geol, Bull. No. 184, 10 pp.

    Google Scholar 

  • Krauskopf, K. B. (1955). Sedimentary deposits of rare metals, Econ. Geol., 50th Ann. Vol., 411–463.

    Google Scholar 

  • Krumbein, W. C. and Graybill, F. A. (1965). An Introduction to Statistical Models in Geology, McGraw-Hill Book Co., New York, 475 pp.

    Google Scholar 

  • Lankin, H. W., Curtin, G. C. and Hubert, A. E. (1971). Geochemistry of gold in the weathering cycle (abs), Geochem. Explor., C.I.M. Spec. 11, 196.

    Google Scholar 

  • Lawrence, G. (1974). The use of Rb/Sr ratios as a guide to mineralization in the Galway granite, Ireland, Geochem. Explor. 1974, A.E.G. Spec. Pub. No. 2, Elsevier Scientific Publishing Co., Amsterdam.

    Google Scholar 

  • Learned, R. E. and Boissen, R. (1973). Gold—a useful pathfinder element in the search for porphyry copper deposits in Puerto Rico, Geochem. Explor. 1972, I.M.M., Lond., 93–103.

    Google Scholar 

  • Lepeltier, C. (1969). A simplified statistical treatment of geochemical data by graphical representation, Econ. Geol., 64, 538–550.

    Article  Google Scholar 

  • Levinson, A. A. (1974). Introduction to Exploration Geochemistry, Applied Publishing Ltd, Calgary, 612 pp.

    Google Scholar 

  • Loughnan, F. C. (1969). Chemical Weathering of the Silicate Minerals, American Elsevier Publishing Co. Inc., New York, 154 pp.

    Google Scholar 

  • Lovering, T. S. (1927). Organic precipitation of metallic copper, U.S.G.S. Bull. 795-C, 45–52.

    Google Scholar 

  • Lukashev, K. I. (1970). Lithology and Geochemistry of the Weathering Crust (translated from Russian), Keter Press, Jerusalem, 367 pp.

    Google Scholar 

  • McCarthy, J. H. (1972). Mercury vapor and other volatile components in the air as guides to ore deposits, J. Geochem. Explor., 1, 143–162.

    Article  Google Scholar 

  • McNerney, J. J. and Buseck, P. R. (1973). Geochemical exploration using mercury vapor, Econ. Geol., 68, 1313–1320.

    Article  Google Scholar 

  • Malyuga, D. P. (1964). Biogeochemical Methods of Prospecting, (translated from Russian), Consultants Bureau, New York, 205 pp.

    Google Scholar 

  • Maranzana, F. (1972). Application of talus sampling to geochemical exploration in arid areas: Los Pelambres hydrothermal alteration area, Chile, Trans. Instn. Min. Metall, Lond., 81, B26–B33.

    Google Scholar 

  • Mason, B. (1958). Principles of Geochemistry, John Wiley & Sons Inc., New York, 310 pp.

    Google Scholar 

  • Meyer, W. T. and Peters, R. G. (1973). Evaluation of sulphur as a guide to buried sulphide deposits in the Notre Dame Bay area, Newfoundland. In Prospecting in Areas of Glacial Terrain, I.M.M., Lond., 55–66.

    Google Scholar 

  • Minatidis, D. G. and Slatt, R. M. (1976). Uranium and copper exploration by nearshore lake sediment geochemistry, Kaipokok region of Labrador, J. Geochem. Explor., 5, 135–144.

    Article  Google Scholar 

  • Morse, R. H. (1971). Comparison of geochemical prospecting methods using radium with those using radon and uranium, Geochem. Explor., C.I.M. Spec. 11, 215–230.

    Google Scholar 

  • Nichol, I. (1973). The role of computerized data systems in geochemical exploration, C.I.M. Bull, 66, 59–68.

    Google Scholar 

  • Nichol, I. and Henderson-Hamilton, J. C. (1965). A rapid quantitative spectrographic method for the analysis of rocks, soils and stream sediments, Trans. Instn. Min. Metall, Lond., 74, 955–961.

    Google Scholar 

  • Nichol, I., Garrett, R. G. and Webb, J. S. (1969). The role of some statistical and mathematical methods in the interpretation of regional geochemical data, Econ. Geol, 64, 204–220.

    Article  Google Scholar 

  • Nilsson, G. (1973). Nickel prospecting and the discovery of the Mjovattnet mineralization, northern Sweden: a case history of the use of combined techniques in drift-covered glaciated terrain. In Prospecting in Areas of Glacial Terrain, I.M.M., Lond., 97–109.

    Google Scholar 

  • North, A. A. (1956). Geochemical field methods for the determination of tungsten and molybdenum in soils, The Analyst, 81, 660–668.

    Article  Google Scholar 

  • Nowlan, G. A. (1976). Concretionary manganese-ion oxides in streams and their usefulness as a sample medium for geochemical prospecting, J. Geochem. Explor., 6, 193–210.

    Article  Google Scholar 

  • Ovchinnikov, L. N. and Grigoryan, S. V. (1971). Primary haloes in prospecting for sulphide deposits, Geochem. Explor., C.I.M. Spec. 11, 375–380.

    Google Scholar 

  • Oyarzum, J. M. (1974). Rubidium and strontium as guides to copper mineralization emplaced in some Chilean andesitic rocks, Geochem. Explor. 1974, A.E.G. Spec. Pub. No. 2, Elsevier Scientific Publishing Co., Amsterdam, 333–338.

    Google Scholar 

  • Pantazis, Th. M. and Govett, G. J. S. (1973). Interpretation of a detailed rock geochemical survey around Mathiati Mine, Cyprus, J. Geochem. Explor., 2, 25–36.

    Article  Google Scholar 

  • Parslow, G. R. (1974). Determination of background and threshold in exploration geochemistry, J. Geochem. Explor., 3, 319–336.

    Article  Google Scholar 

  • Philbin, P. and Senftle, F. E. (1971). Field activation analysis of uranium ore using Cf-252 neutron source, Trans. Soc. Min. Eng., 250, 102–106.

    Google Scholar 

  • Philpott, D. E. (1974). Shangani—a geochemical discovery of a nickel copper sulphide deposit, Geochem. Explor. 1974, A.E.G. Spec. Pub. No. 2, Elsevier Scientific Publishing Co., Amsterdam, 503–510.

    Google Scholar 

  • Plant, J. (1971). Orientation studies on stream sediment sampling for a regional geochemical survey in northern Scotland, Trans. Instn. Min. Metall., Lond., 80, B324–B345.

    Google Scholar 

  • Plant, J. and Coleman, R. F. (1973). Application of neutron activation analysis to the evaluation of placer gold concentrations, Geochem. Explor. 1972, I.M.M., Lond., 373–381.

    Google Scholar 

  • Rankama, K. and Sahama, Th. G. (1950). Geochemistry, University of Chicago Press, Chicago, 912 pp.

    Google Scholar 

  • Reedman, A. J. (1973). Prospection and evaluation of beryl pegmatites in southwest Uganda, Overseas Geol. Miner. Resour. No. 41, 86–100.

    Google Scholar 

  • Reedman, J. H. (1974). Residual soil geochemistry in the discovery and evaluation of the Butiriku carbonatite, southeast Uganda, Trans. Instn. Min. Metall, Lond., 83, B1–12.

    Google Scholar 

  • Ritchie, A. S. (1964). Chromatography in Geology, Elsevier Scientific Publishing Co., Amsterdam, 185 pp.

    Google Scholar 

  • Robbins, J. C. (1973). Zeeman spectrometer for measurement of atmospheric mercury vapour, Geochem. Explor. 1972, I.M.M., Lond., 315–323.

    Google Scholar 

  • Robinson, G. W. (1951). Soils — Their Origin, Constitution and Classification, Thomas Murby and Co., London, 573 pp.

    Google Scholar 

  • Sainsbury, C. L. (1957). A geochemical exploration for antimony in southeastern Alaska, U.S.G.S. Bull. 1024-H, 163–178.

    Google Scholar 

  • Sandell, E. B. (1950). Colorimetric Determination of Traces of Metals, Interscience Publishers Inc., New York, 673 pp.

    Google Scholar 

  • Scott, R. H., Fassel, V. A., Kniseley, R. N. and Nixon, D. E. (1974). Inductively coupled plasma-optical emission analytical spectrometry, Analytical Chemistry, 46(1), 75–80.

    Article  Google Scholar 

  • Scott, R. H. and Kokok, M. L. (1975). Application of inductively coupled plasmas to the analysis of geochemical samples, Analytic Chimica Acta, 70, 271–279.

    Google Scholar 

  • Sears, W. P. (1971). Mercury in base metal and gold ores of the province of Quebec, Geochem. Explor., C.I.M., Spec. 11, 384–390.

    Google Scholar 

  • Shaw, D. M. (1954). Trace elements in pelitic rocks, Geol. Soc. Am. Bull 65, 1151–1166.

    Article  Google Scholar 

  • Stanton, R. E. (1966). Rapid Methods of Trace Analysis for Geochemical Application, Edward Arnold, London, 96 pp.

    Google Scholar 

  • Stevens, D. N., Rouse, G. E. and de Voto, R. H. (1971). Radon-222 in soil gas: three uranium exploration case histories in the western United States, Geochem. Explor., C.I.M., Spec. 11, 258–264.

    Google Scholar 

  • Sutton, W. R. and Soonawala, N. M. (1975). A soil radium method for uranium prospecting, C.I.M. Bull., 68(757), 51–56.

    Google Scholar 

  • Swaine, D. J. (1955). Trace element content of soils, Commonwealth Agricultural Bur., Farnham Royal, Bucks., Tech. Comm. No. 48, 157 pp.

    Google Scholar 

  • Tauson, L. V. and Kozlov, V. D. (1973). Distribution functions and ratios of trace element concentrations as estimators of the ore bearing potential of granites, Geochem. Explor. 1972, I.M.M., London, 37–44.

    Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table, Geochem. Cosmochim. Acta, 28, 1273–1284.

    Article  Google Scholar 

  • Taylor, S. R. (1966). The application of trace element data to problems in petrology, Physics and Chem. of the Earth, 6, 135–213.

    Google Scholar 

  • Thompson, M. and Howarth, R. J. (1973). Rapid estimation and control of precision by duplicate determination, The Analyst, 78, 153–160.

    Article  Google Scholar 

  • Tooms, J. S. and Webb, J. S. (1961). Geochemical prospecting investigations in the Northern Rhodesian Copperbelt, Econ. Geol., 56, 815–846.

    Article  Google Scholar 

  • Travis, G. A., Keays, R. R. and Davison, R. M. (1976). Palladium and iridium in the evaluation of nickel gossans in Western Australia. Econ. Geol., 71, 1229–1243.

    Article  Google Scholar 

  • Turekian, K. K. and Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust, Geol. Soc. Am. Bull. 72, 641–664.

    Google Scholar 

  • Vinogradov, A. P. (1956). Regularity of distribution of chemical elements in the earth’s crust, Geochemistry, No. 1, 1–43.

    Google Scholar 

  • Vinogradov, A. P. (1959). The Geochemistry of Rare and Dispersed Chemical Elements in Soils (translated from Russian), Consultants Bureau, New York, Chapman and Hall, London, 209 pp.

    Google Scholar 

  • Vlasov, K. A. (ed.) (1966). Geochemistry and Mineralogy of Rare Elements and Genetic Types of their Deposits, vol. 1 (translation), Israel Program for Scientific Translations, Jerusalem, 688 pp.

    Google Scholar 

  • Warren, H. V. (1972). Biogeochemistry in Canada, Endeavour, 31, 46–49.

    Article  Google Scholar 

  • Warren, H. V., Delavault, R. E. and Barakso, J. (1964). The role of arsenic as a pathfinder in biogeochemical prospecting, Econ. Geol., 59, 1381–1385.

    Article  Google Scholar 

  • Wedepohl, K. H. (1969). Handbook of Geochemistry, Springer-Verlag, Berlin.

    Google Scholar 

  • Wedepohl, K. H. (1970). Geochemistry (translation), Holt, Rinehart and Winston Inc., New York.

    Google Scholar 

  • West, W. F. (1970). Termite prospecting, Chamber of Mines Journal, Rhodesia, October, 32–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Reedman, J.H. (1979). Geochemical Prospecting. In: Techniques in Mineral Exploration. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9227-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9227-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9229-0

  • Online ISBN: 978-94-009-9227-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics