R. C. Stalnaker and R. H. Thomason, ‘A Semantic Analysis of Conditional Logic’, (mimeo., 1967). In this paper, the formal system, C2, is proved sound and semantically complete with respect to the interpretation sketched in the present paper. That is, it is shown that a formula is a consequence of a class of formulas if and only if it is derivable from the class in the formal system, C2.
Google Scholar
N. Rescher, Hypothetical Reasoning, Amsterdam, 1964.
Google Scholar
Cf. R. Chisholm, ‘The Contrary-to-fact Conditional’, Mind 55 (1946), 289–307, reprinted in Readings in Philosophical Analysis, ed. by H. Feigl and W. Sellars, New York, 1949, pp. 482–497. The problem is sometimes posed (as it is here) as the task of analyzing the subjunctive conditional into an indicative statement, but I think it is a mistake to base very much on the distinction of mood. As far as I can tell, the mood tends to indicate something about the attitude of the speaker, but in no way effects the propositional content of the statement.
CrossRef
Google Scholar
F. P. Ramsey, ‘General Propositions and Causality’, in Ramsey, Foundations of Mathematics and other Logical Essays, New York, 1950, pp. 237–257. The suggestion is made on p. 248. Chisholm, op. cit., p. 489, quotes the suggestion and discusses the limitations of the ‘connection’ thesis which it brings out, but he develops it somewhat differently.
Google Scholar
N. Rescher, op. cit., pp. 11–16, contains a very clear statement and discussion of this problem, which he calls the problem of the ambiguity of belief-contravening hypotheses. He argues that the resolution of this ambiguity depends on pragmatic consideration.
Google Scholar
Cf, also Goodman’s problem of relevant conditions in N. Goodman, Fact, Fiction, and Forecast, Cambridge, Mass., 1955, pp. 17–24.
Google Scholar
S. Kripke, ‘Semantical Analysis of Modal Logics, I’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 9 (1963), 67–96.
CrossRef
Google Scholar
The different restrictions on the relation R provide interpretations for the different modal systems. The system we build on is von Wright’s M. If we add the transitivity requirement, then the underlying modal logic of our system is Lewis’s S4, and if we add both the transitivity and symmetry requirements, then the modal logic is S5. S. Kripke, ‘Semantical Analysis of Modal Logics, I’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 9 (1963), 67–96 Cf. S. Kripke, op. cit.
CrossRef
Google Scholar
A.W. Burks, ‘The Logic of Causal Propositions’, Mind 60 (1951), 363–382. The causal implication connective characterized in this article has the same structure as strict implication. For an interesting philosophical defense of this modal interpretation of conditionals,
CrossRef
Google Scholar
see B. Mayo, ‘Conditional Statements’, The Philosophical Review 66 (1957), 291–303.
CrossRef
Google Scholar
Goodman, op. cit., pp. 15, 32.
Google Scholar
Goodman, op. cit., pp. 15, 32.
Google Scholar
Chisholm, op, cit., p. 492.
Google Scholar
For a discussion of the relation of laws to counterfactuals, see E. Nagel, Structure of Science, New York, 1961, pp. 47–78. For a recent discussion of the paradoxes of confirmation by the man who discovered them,
Google Scholar
see C. G. Hempel, ‘Recent Problems of Induction’, in R. G. Colodny (ed.), Mind and Cosmos, Pittsburgh, 1966, pp. 112–134.
Google Scholar
Goodman, op. cit., especially Ch. IV.
Google Scholar
Several philosophers have discussed the relation of conditional propositions to conditional probabilities. See R. C. Jeffrey, ‘If’, The Journal of Philosophy 61 (1964), 702–703;
Google Scholar
and E. W. Adams, ‘Probability and the Logic of Conditionals’, in J. Hintikka and P. Suppes (eds.), Aspects of Inductive Logic, Amsterdam, 1966, pp. 265-316. I hope to present elsewhere my method of drawing the connection between the two notions, which differs from both of these.
CrossRef
Google Scholar
J. R. Tolkien, ‘On Fairy Stories’, in The Tolkien Reader, New York, 1966, p. 3.
Google Scholar