Skip to main content

Adaptive Responses of Leaf Water Potential, CO2-Gas Exchange and Water Use Efficiency of Olea Europaea During Drying and Rewatering

  • Chapter

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 4))

Abstract

The characteristic eco-physiological feature of sclerophyllous Mediterranean plants may be summarized as the ability to maintain sufficient metabolic activity and productivity in an environment which two unfavourable seasons: a period of drought during summer and early autumn, and short periods of low temperatures in winter. The ability of evergreen plants to tolerate dry seasons must include sufficient drought resistance and certain adaptive mechanisms, which enable the plants to remain productive when water resources are reduced. The resistance of Mediterranean sclerophylls to lethal desiccation has been studied by Oppenheimer (1932), Rouschal (1938), Oppenheimer, Leshem (1966), and responsive increase in desiccation resistance of olive leaves during summer drought was shown by Larcher (1963a). Concurrent measurements of water relations and CO2-gas exchange of sclerophyllous plants have been carried out in the Mediterranean region (France: Killian 1933, Eckardt et al. 1975, Italy: Weinmann, Kreeb 1975), with species native to California and Chile (Mooney et al. 1975, Dunn 1975, Gigon 1979), and in Australia (Hellmuth 1971). However, a thorough analysis of the components of drought adaptation in the metabolism and dry matter production of sclerophyllous Mediterranean trees has still to be done.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer H (1978) Photosynthesis of ivy leaves (Hedera helix) after heat stress. I. CO2-gas exchange and diffusion resistances. Physiol. Plant. 44, 400–406.

    Article  CAS  Google Scholar 

  • Bauer H, Bauer U (1980) Photosynthesis in leaves of the juvenile and adult phase of ivy (Hedera helix), Physiol. Plant. 49, 366–372.

    Article  CAS  Google Scholar 

  • Cowan IR (1977) Stomatal behaviour and environment, Adv. Bot. Res. 4, 117–228.

    Article  Google Scholar 

  • Cutler JM, Shahan KW, Steponkus PL (1980a) Dynamics of osmotic adjustment in rice. Crop Sci. 20, 310–314.

    Article  Google Scholar 

  • Cutler JM, Shahan KW, Steponkus PL (1980b) Alteration of the internal water relations of rice in response to drought hardening. Crop Sci. 20, 307–310.

    Article  Google Scholar 

  • Dunn EL (1975) Environmental stresses and inherent limitations affecting CO2 exchange in evergreen sclerophylls in mediterranean climates. In Gates DM, Schmerl RB, eds. Perspectives of biophysical ecology. Ecological Studies 12, 159–181. Berlin, Springer.

    Google Scholar 

  • Eckardt FE, Heim G, Methy M, Sauvezon R (1975) Interception de l’énergie rayonnante, échanges et croissance dans une forêt mediterranéenne à feuil. persistant (Queroetum iliois). Photosynthetica 9, 145–156.

    Google Scholar 

  • Evenari M, Schulze ED, Kappen L, Buschbom U, Lange OL (1975) Adaptive mechanisms in desert plants. In Vernberg FJ, ed. Physiological adaptation to the environment, pp. 111–129. New York, Intext. Educ. Publ.

    Google Scholar 

  • Farquhar GD (1978) Feedforward responses of stomata to humidity. Aust. J. Plant Physiol. 5, 787–800.

    Article  Google Scholar 

  • Fischer RA, Turner NC (1978) Plant productivity in the arid and semiarid zones. Ann. Rev. Plant Physiol. 29, 277–317.

    Article  CAS  Google Scholar 

  • Gaastra P (1959) Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. Meded. Landbouw- hogesch. Wageningen 59, 1–68.

    Google Scholar 

  • Gigon A (1979) CO2-gas exchange, water relations and convergence of mediterranean shrub-types from California and Chile. Oecol. Plant. 14, 129–150.

    Google Scholar 

  • Hellmuth EO (1971) Eco-physiological studies on plants in arid and semiarid regions in western Australia. III. Comparative studies on photosynthesis, respiration and water relations of ten arid zone and two semi-arid zone plants under winter and summer climatic conditions. J. Ecol. 59, 225–259.

    Article  Google Scholar 

  • Holmgren P, Jarvis PG, Jarvis MS (1965) Resistances to carbon dioxide and water vapour transfer in leaves of different plant species. Physiol. Plant. 18, 557–573.

    Article  Google Scholar 

  • Hsiao ThC (1973) Plant responses to water stress. Ann, Rev. Plant Physiol. 24, 519–570.

    Article  CAS  Google Scholar 

  • Jones HG, Higgs KH (1979) Water potential-water content relationships in apple leaves. J. Exper. Bot. 30, 965–970.

    Article  Google Scholar 

  • Jones MM, Turner NC (1980) Osmotic adjustment in expanding and fully expanded leaves of sunflower in response to water deficits. Aust. J. Plant Physiol. 7, 181–192.

    Article  Google Scholar 

  • Kandiko RA, Timmis R, Worrall J (1980) Pressure- volume curves of shoots and roots of normal and drought conditioned western hemlock seedlings. Can. J. For. Res. 10, 10–16.

    Article  Google Scholar 

  • Killian Ch (1933) Recherches écologiques sur les fluctuations saisonniéres de 1’assimilation chloro-phyllienne chez les plantes du maquis algérien. C.R. Sci. Paris 196, 804–807.

    Google Scholar 

  • Kramer PJ, Kozlowski TT (1979) Physiology of woody plants, 2nd edn. New York, Academic Press.

    Google Scholar 

  • Kyriakopoulos E, Richter H (1977) A comparison of methods for the determination of water status in Querous ilex L. Ztschr. f. Pflanzenphysiol. 82, 1, 14–27.

    Google Scholar 

  • Larcher W (1960) Transpiration and photosynthesis of detached leaves and shoots of Querous pubesoens and Querous ilex during desiccation under standard conditions. Bull. Res. Counc., Israel 8D, 213–224.

    Google Scholar 

  • Larcher W (1963a) Zur Frage des Zusammenhanges zwischen Austrocknungsresistenz und Frosthärte bei Immergrunen. Protoplasma 57, 569–587.

    Article  CAS  Google Scholar 

  • Larcher W (1963b) Orientierende Untersuchung über das Verhäaltnis von C02-Aufnahme zu Transpiration bei fortschreitender Bodenaust,rocknung. Planta 60, 339–343.

    Article  CAS  Google Scholar 

  • Larcher W (1980) Physiological plant ecology, 2nd. edn. Berlin, Springer.

    Google Scholar 

  • Loveys BR, Kriedemann PE (1973) Rapid changes in abscisic-like inhibitors following alterations in vine leaf water potential. Physiol. Plant. 28, 476–479.

    Article  CAS  Google Scholar 

  • McMichael BL (1980) Water stress adaptation. In Hesketh JD, Jones JW, eds. Predicting photosynthesis for ecosystem models I, pp. 183–203. Boca Raton, CRC-Press.

    Google Scholar 

  • Montfort C, Hahn H (1950) Atmung und Assimilation als dynamisches Kennzeichen abgestufter Trockenresi-stenz bei Farnen und hoheren Pflanzen. Planta 38, 503–515.

    Article  CAS  Google Scholar 

  • Mooney HA, Harrison AT, Morrow PA (1975) Environmental limitations of photosynthesis on a California evergreen shrub. Oecologia 19, 293–301.

    Google Scholar 

  • Mooney HA, Björkman O, Collatz GJ (1977) Photosynthetic acclimation to temperature and water stress in the desert shrub Larrea divavicata. Carnegie Inst. Year Book 76, 328–341.

    Google Scholar 

  • Müllerstael H (1968) Untersuchungen über den Gaswechsel zweijähriger Kolzpflanzen bei fort- schreitender Bodenaustrocknung. Beitr. Biol. Pflanzen 44, 319–341.

    Google Scholar 

  • Nobel PS, Longstreth DJ, Hartsock TL (1978) Effect of water stress on the temperature optima of net C02-exchange- for two desert species. Physiol. Plant. 44, 97–101.

    Article  Google Scholar 

  • Oppenheimer HR (1932) Zur Kenntnis der hoch- sommerlichen Wasserbilanz mediterraner Gehölze. Ber. D. Bot. Ges. 50a, 185–243.

    Google Scholar 

  • Oppenheimer HR, Leshem B (1966) Critical tresholds of dehydration in leaves of Nerium oleander L. Protoplasma 61, 302–321.

    Article  Google Scholar 

  • Rouschal E (1938) Zur Ökologie der Maccien. I. Jb. wiss. Bot. 87, 436–523.

    Google Scholar 

  • Schneider GW, Childers NF (1948) Influence of soil moisture on photosynthesis respiration and transpiration of apple leaves. Plant Physiol. 16, 525–583.

    Google Scholar 

  • Schulze ED, Küppers M (1979) Short-term and long-term effects of plant water deficits on stomatal response to humidity in Corylus avellana L. Planta 146, 319–326.

    Article  Google Scholar 

  • Schulze ED, Lange OL, Evenari M, Kappen L, Buschbom U (1975) The role of air humidity and temperature in controlling stomatal resistance of Prumus armeniaca L. under desert conditions. III. The effect on water use efficiency. Oecologia (Berl.) 19, 303–314.

    Google Scholar 

  • Schulze ED, Hall AE, Lange OL, Evenari M, Kappen L, Buschbom U (1980) Long-term effects of drought on wild and cultivated plants in the Negev desert. I. Maximal rates of net photosynthesis. Oecologia 45, 11–18.

    Article  Google Scholar 

  • Stålfelt MG (1937) Der Gasaustausch der Moose. Planta 27, 30–60.

    Article  Google Scholar 

  • Stocker O (1948) Beiträge zu einer Theorie der Dürreresistenz. Planta 35, 445–466.

    Article  Google Scholar 

  • Stocker O (1956) Die Dürreresistenz. Handbuch d. Pflanzenphysiologie 3, 696–741.

    Google Scholar 

  • Thomaser W (1975) Kaloriengehalt verschiedener Organe mediterraner Hartlaubpflanzen und Vorkom-men von Stärke und Fett im Jahreslauf. Thesis Padua-Innsbruck.

    Google Scholar 

  • Turner NC (1979) Drought resistance and adaptation to water deficits in crop plants. In Mussell H, Staples RC, eds. Stress physiology in crop plants, 343–372.-New York, Wiley.

    Google Scholar 

  • Tyree MT, Hammel HT (1972) The measurement of turgor pressure and the water relations of plants by the pressure bomb technique. J. Exp. Bot. 23, 267–282.

    Article  Google Scholar 

  • Weinmann R, Kreeb KH CO2-Gaswechsel von Sklerophyllen im nördlichen Gardaseegebiet. Ber. dtsch. bot. Ges. 88, 205–210.

    Google Scholar 

  • Wilson JR., Ludlow MM, Fisher MJ, Schulze ED (1980) Adaptation to water stress of the leaf water relations of four tropical forage species. Aust. J. Plant Phys. 7, 207–220.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Dr W. Junk Publishers, The Hague/Boston/London

About this chapter

Cite this chapter

Larcher, W., de Moraes, J.A.P.V., Bauer, H. (1981). Adaptive Responses of Leaf Water Potential, CO2-Gas Exchange and Water Use Efficiency of Olea Europaea During Drying and Rewatering. In: Margaris, N.S., Mooney, H.A. (eds) Components of productivity of Mediterranean-climate regions Basic and applied aspects. Tasks for Vegetation Science, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8683-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8683-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8685-5

  • Online ISBN: 978-94-009-8683-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics