On the Asymptotic Distribution of the Multivariate Cramer-Von Mises and Hoeffding-Blum-Kiefer-Rosenblatt Independence Criteria

  • Miklós Csörgő
Part of the NATO Advanced study Institutes Series book series (ASIC, volume 79)


This exposition consists of two parts. The first one of them is devoted to surveying recent developments in the asymptotic distribution theory of the multivariate Cramér-von Mises statistic. The second part is a preview of some developments in the asymptotic distribution theory of the Hoeffding-Blum-Kiefer-Rosenblatt independence criterion in that the there quoted 1980 joint results with Derek S. Cotterill of the Department of national Defence, Ottawa, have not yet appeared elsewhere.

Key Words

Multivariate Cramér-von Mises statistic Cramér-von Mises type tests of independence distribution tables and rates of convergence for both empirical processes invariance principles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T.W., Darling, D.A. (1952). Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Annals of Mathematical Statistics, 23, 193–212.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Blum, J.R., Kiefer, J., Rosenblatt, M. (1961). Distribution free tests of independence based on the sample distribution function. Annals of Mathematical Statistics, 32, 485–498.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Cotterill, D.S., Csörgö, M. (1979). On the limiting distribution of and critical values for the multivariate Craér-von Mises Statistic. Carleton Mathematical Lecture Note No. 24Google Scholar
  4. Cotterill, D.S., Csörgö, M. (1980). On the limiting distribution of and critical values for the Hoeffding-Blum-Kiefer- Rosenblatt independence criterion. Manuscript in preparation.zbMATHGoogle Scholar
  5. Csörgö, S. (1976). On an asymptotic expansion for the von Mises ω2 statistic. Acta Scientiarum Mathematicarum (Szeged), 38, 45–67.zbMATHGoogle Scholar
  6. Csörgö, M. (1979). Strong approximations of the Hoeffding, Blum, Kiefer, Rosenblatt multivariate empirical process. Journal of Multivariate Analysis, 9, 84–100.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Csörgö, M., Révész, P. (1975). A new method to prove Strassen type laws of invariance principle II. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 31, 261–269.zbMATHCrossRefGoogle Scholar
  8. Csörgö, S., Stachó, L. (1980). A step toward an asymptotic xpansion for the Cramer-von Mises statistic. In Colloquia Mathematioa Societatis Janos Bolyai, 21, B. Gyires, ed. Analytic Function Methods in Probability Theory, North- Holland Publishing Company, Amsterdam, Pages 53–65.Google Scholar
  9. DeWet, T. (1979). Cramer-von Mises tests for independence. Manuscript.Google Scholar
  10. Dugue, D. (1969). Characteristic functions of random variables connected with Brownian motion and of the von Mises multi-dimensional ω2n. In Multivariate Analysis, Vol. 2, P. R. Krishnaiah, ed. Academic Press, New York. Pages 289–301.Google Scholar
  11. Durbin, J. (1970). Asymptotic distributions of some statistics based on the bivariate sample distribution function. In Nonparametric Techniques in Statistical Inference, M. L. Puri, ed. Cambridge University Press. Pages 435–451.Google Scholar
  12. Götze, F. (1979). Asymptotic expansions for bivariate von Mises functionals. Preprints in Statistics 49, University of Cologne.Google Scholar
  13. Goodman, V. (1976). Distribution estimates for functionals of the two-parameter Wiener process. Annals of Probability, 4, 977–982.zbMATHCrossRefGoogle Scholar
  14. Hoeffding, W. (1949). A nonparametric test of independence. Annals of Mathematical Statistics, 19, 546–557.MathSciNetCrossRefGoogle Scholar
  15. Komlós, J., Major, P., Tusnády, G. (1975). An approximation of partial sums of independent R.V.’s and the sample D.F.I. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 32, 111–131.zbMATHCrossRefGoogle Scholar
  16. Krivyakova, E.N., Martynov, G.V., Tyurin Yu. N. (1977). On the distribution of the ω2 statistic in the multidimensional case. Theory of Probability and its Applications, 22, 406–410.CrossRefGoogle Scholar
  17. Rosenblatt, M. (1952). Limit theorems associated with variants of the von Mises statistic. Annals of Mathematical Statistics, 23, 617–623.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Tusnády, G. (1977a). A study of statistical hypotheses (in Hungarian). Candidatus Disseration, Hungarian Academy of Sciences.Google Scholar
  19. Tusnády, G. (1977b). Strong invariance principles. In Recent Developments in Statistics J.R. Barra et al., eds. North-Holland Publishing Company, Amsterdam. Pages 289 –300.Google Scholar
  20. Tusnády, G. (1977). A remark on the approximation of the sample DF in the multidimensional case. Periodica Mathematica Hungarica, 8, 53–55.MathSciNetzbMATHCrossRefGoogle Scholar
  21. Zincenko, N.M. (1975). On the probability of exit of the Wiener random field for some surface (in Russian with English summary). Teorija Verojatnostei i Matematiceskaja Statistika (Kiev), 13, 62–69.MathSciNetGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1981

Authors and Affiliations

  • Miklós Csörgő
    • 1
  1. 1.Department of Mathematics and StatisticsCarleton UniversityOttawaCanada

Personalised recommendations