Advertisement

Techniques for Simulating Galactic Collisions

  • R. A. James
Chapter
  • 71 Downloads
Part of the Astrophysics and Space Science Library book series (ASSL, volume 91)

Abstract

Numerical simulation of the evolution of two or more interacting galaxies requires a fine spatial resolution to resolve detail in individual systems. The much larger regions separating the galaxies must be treated in the same detail with current fast Fourier transform based potential solvers. This paper describes a mesh segmentation technique which permits us to solve very large potential problems and to concentrate our effort on the regions where detailed potential maps are required. We discuss the need for this method in simulating single disc galaxies, and in the study of galactic collisions.

Keywords

Mesh Point Large Mesh Disc Galaxy Operation Count Cyclic Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alladin, S. M., 1965, Astrophys. J., 141, p. 768.ADSCrossRefGoogle Scholar
  2. Appleton, P. N., Davies, R. D. and Stephenson, R. J., 1981, Mon. Not. Roy. Astron. Soc., 195, p. 327.ADSGoogle Scholar
  3. Burridge, D. M. and Temperton, C., 1979, J. Computat. Phys., 30, p. 145.ADSzbMATHCrossRefGoogle Scholar
  4. Cooley, J. W. and Tukey, J. W., 1965, Math. Corap., 19, p. 297.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Hockney, R. W., 1970, Methods in Computational Physics, 9, p. 135.Google Scholar
  6. James, R. A., 1977, J. Computat. Phys., 25, p. 71.ADSzbMATHCrossRefGoogle Scholar
  7. James, R. A. and Wilkinson, A., 1981, in preparation.Google Scholar
  8. Kantorovich, L. V. and Krylov, V. I., 1958, Approximate Methods of Higher Analysis, p. 185, Groningen, Noordhoff.Google Scholar
  9. Lynden-Bell, D., 1967, Mon. Not. Roy. Astron. Soc., 136, p. 101.ADSGoogle Scholar
  10. Lynden-Bell, D., 1979, Mon. Not. Roy. Astron. Soc., 187, p. 101.ADSzbMATHGoogle Scholar
  11. Ostriker, J. P., Peebles, R. J. E. and Yahil, A., 1974, Astrophys. J., 193, L1.ADSCrossRefGoogle Scholar
  12. Sastry, K. S. and Alladin, S. M., 107O, ASS 7, p. 261.Google Scholar
  13. Sastry, K. S. and Alladin, S. M., 1977, ASS 46, p. 285.Google Scholar
  14. Theys, J. C. and Spiegel, E. A., 1977, Astrophys. J., 212, p. 616.ADSCrossRefGoogle Scholar
  15. Toomre, A. and Toomre, J., 1972, Astrophys. J., 178, p. 623.ADSCrossRefGoogle Scholar
  16. van Albada, T. S. and van Gorkom, J. H., 1977, Astron. and Astrophys., 54, p. 121.ADSGoogle Scholar
  17. von Hagenow, K. and Lackner, K., 1975, Proc. 7th Conference on Numerical Simulation of Plasmas, New York.Google Scholar
  18. White, S. D. M., 1978, Mon. Not. Roy. Astron. Soc., 184, p. 185.ADSGoogle Scholar
  19. White, S. D. M., 1979, Mon. Not. Roy. Astron. Soc., 189, p. 831.ADSGoogle Scholar
  20. Yahil, A., 1977, Astrophys. J., 217, p. 27.ADSCrossRefGoogle Scholar
  21. Ziegler, H., 1972, IEEE Trans AU-20, p. 353.Google Scholar

Copyright information

© D. Reidel Publishing Company 1981

Authors and Affiliations

  • R. A. James
    • 1
  1. 1.Department of AstronomyUniversity of ManchesterEngland

Personalised recommendations