Skip to main content

Developmental Renal Physiology

  • Chapter
Pediatric Nephrology

Part of the book series: Developments in Nephrology ((DINE,volume 3))

Abstract

In 1940, Barnett(1) demonstrated by inulin clearance that the rates of glomerular filtration in neonates were considerably lower than levels found in older children and adults, thus launching the field of developmental renal physiology. This observation has been confirmed repeatedly. Barnett also suggested that with birth, the rate of increase in renal function that proceeds in utero is markedly accelerated, even in premature infants, permitting the kidney to assume excretory and regulatory functions in the absence of the placenta. This phenomenon has been demonstrated nicely by Guignard and associates(2), who studied low-birth-weight infants during the first 72 hours after birth and over the subsequent three weeks. The increase in GFR between the 28th and 35th week of gestation was more rapid than during the subsequent five weeks, but a striking acceleration after birth was apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnett, H.L. Renal physiology in infants and children. I. Method for estimation of glomerular filtration rate. Proc. Soc. Exp. Biol. Med. 44: 654, 1940.

    CAS  Google Scholar 

  2. Guignard, J.-P., Torrado, A., Feldman, H., and Gautier, E. Assessment of glomerular filtration rate in children. Hely. Paediat. Acta 35: 437, 1980.

    CAS  Google Scholar 

  3. Spitzer, A., and Edelmann, C.M., Jr. Maturational changes in pressure gradients for glomerular filtration. Amer. J. Physiol. 221: 1431, 1971.

    PubMed  CAS  Google Scholar 

  4. Goldsmith, D.I., Jodorkovsky, R.A., Kleinman, S.R., Sherwinter, J., and Spitzer, A. Changes in glomerular capillar permeability to dextrans during development. Ped. Res. 13: 1126, 1974.

    Google Scholar 

  5. Ichikawa, I., Maddox, D.A., Brenner, B.M. Maturational development of glomerular ultrafiltration in the rat. Amer. J. Physiol. 236: F465, 1979.

    PubMed  CAS  Google Scholar 

  6. Fetterman, G.H., Shuplock, N.A., Philipp, F.J., and Gregg, H.S. The growth and maturation of human glomeruli and proximal convolutions from term to adulthood: Studies by microdissection. Pediatrics 35: 601, 1965.

    PubMed  CAS  Google Scholar 

  7. John, E., Goldsmith, D.I., and Spitzer, A. Developmental changes in glomerular vasculature: physiologic implications. Clin. Res. 28: 450A, 1980.

    Google Scholar 

  8. Larsson, L. Discussion. First International Workshop on Developmental Renal Physiology, N.Y., 1980.

    Google Scholar 

  9. Gruskin, A.B., Edelmann, C.M., Jr., and Yuan, S. Maturational changes in renal blood flow in piglets. Pediatr. Res. 4: 7, 1970.

    PubMed  CAS  Google Scholar 

  10. Edelmann, C.M., Jr. Maturation of the neonatal kidney. Proc. 3rd. International Congress of Nephrology, Wash. D.C., 1966, Vol. 3; pp. 112

    Google Scholar 

  11. Segal, S., and Smith, I. Delineation of cystine and cysteine transport systems in rat kidney cortex by developmental patterns. Proc. Natl. Acad. Sci. U.S.A. 63: 926, 1969.

    Article  PubMed  CAS  Google Scholar 

  12. Baerlocker, K.E., Scriver, C.R., and Mohyuddin, F. Ontogeny of iminoglycine transport in mammalian kidney. Proc. Natl. Acad. Sci. U.S.A. 65: 1016, 1970.

    Google Scholar 

  13. Arant, B.S., Jr., Edelmann, C.M., Jr., and Nash, M.A. The renal re-absorption of glucose in the developing canine kidney. A study of glomerulotubular balance. Pediatr. Res. 8: 638, 1974.

    Article  PubMed  CAS  Google Scholar 

  14. Brodehl, J., Franken, A., and Gellissen, K. Maximal tubular reabsorption of glucose in infants and children. Acta Paediatr. Scand. 61: 413, 1972.

    Article  PubMed  CAS  Google Scholar 

  15. Spitzer, A., and Brandis, M. Functional and morphologic maturation of the superficial nephrons. Relationship to total kidney function. J. Clin. Invest. 53: 1, 1974.

    Article  Google Scholar 

  16. Horster, M., and Valtin, H. Postnatal development of renal function: Micropuncture and clearance studies in the dog. J. Clin. Invest. 50: 779, 1971.

    Article  PubMed  CAS  Google Scholar 

  17. Aperia, A., Broberger, O., Thodenius, K., and Zetterstrom, R. Development of renal control of salt and fluid homeostasis during the first year of life. Acta Paediatr. Scand. 64: 393, 1975.

    Article  PubMed  CAS  Google Scholar 

  18. Kleinman, L.I. Renal sodium reabsorption during saline loading and distal blockade in newborn dogs. Amer. J. Physiol. 228: 1403, 1975.

    PubMed  CAS  Google Scholar 

  19. Spitzer, A., and Schoeneman, M. The role of the kidney in sodium homeostasis during maturation. Submitted for publication.

    Google Scholar 

  20. Rodriguez-Soriano, J., Vallo, A., Castillo, G., and Oliveros, R. Renal handling of water and sodium in infancy and childhood. A study using clearance methods during hypotonic saline diuresis. J. Ped. Neph. Urol., in press.

    Google Scholar 

  21. Kotchen, T.A., Strickland, A.L., Rice, T.W., and Walters, D.R. A study of the renin-angiotensin system in the newborn infant. J. Fed. 80: 938, 1972.

    CAS  Google Scholar 

  22. Kowarski, A., Katz, H., and Migeon, C.J. Plasma aldosterone concentration in normal subjects from infancy to adulthood. J. Clin. Endo. Metab. 38: 489, 1974.

    Article  CAS  Google Scholar 

  23. Spitzer, A.S. Renal Physiology and Functional Development, in Pediatric Kidney Disease, C.M. Edelmann, Jr.(Ed.), Little, Brown N.Y., pp. 25–128.

    Google Scholar 

  24. Sulyok, E. The relationship between electrolyte and acid-base balance in premature infants during early post-natal life. Biol. Neonate 17: 227, 1971.

    Article  PubMed  CAS  Google Scholar 

  25. Siegel, S.R. Effects of low sodium diet and impaired sodium conservation in the newborn. First International Workshop on Developmental Renal Physiology, N.Y. 1980.

    Google Scholar 

  26. Sulyok, E., Nemeth, M., Tenyi, I., Csaba, I.F., Varga, L., and Varga, F. The relationship between the postnatal development of renin-angiotensin-aldosterone system and electrolyte and acid-base status of the sodium chloride supplemented premature infants. First International Workshop of Developmental Renal Physiology, N.Y. 1980.

    Google Scholar 

  27. Jose, P.A., Logan, A.G., Slotkoff, L.M., Lillienfield, L.S., Calcagno, P.L., and Eisner, G.M. Intrarenal blood flow distribution in canine puppies. Pediatr. Res. 5: 335, 1971.

    Article  PubMed  CAS  Google Scholar 

  28. Kleinman, L.I., and Reuter, J.H. Maturation of glomerular blood flow distribution in the newborn dog. J. Physiol. (Lond.) 228: 91, 1973.

    CAS  Google Scholar 

  29. Aschinberg, K.C., Goldsmith, D.I., Olbing, H., Spitzer, A., Edelmann, C.M., Jr., and Blaufox, M.D. Neonatal changes in renal blood flow distribution in puppies. Amer. J. Physiol. 228: 1453, 1975.

    CAS  Google Scholar 

  30. Olbing, H., Blaufox, M.D., Aschinberg, L.C., Silkalns, G.I., Bernstein, J., Spitzer, A., and Edelmann, C.M., Jr. Postnatal changes in renal blood flow distribution in puppies. J. Clin. Invest. 52: 2885, 1973.

    Article  PubMed  CAS  Google Scholar 

  31. Jose, P.A., Pelayo, J.C., Felder, R.E., Tavani, N., Montgomery, S.B., Calcagno, P.L., and Eisner, G.M. Maturation of single nephron filtration rate in the canine puppy: The effect of saline loading. First International Workshop on Developmental Renal Physiology, N.Y. 1980.

    Google Scholar 

  32. Goldsmith, D.I., Drukker, A., Blaufox, M.D., Edelmann, C.M., Jr, and Spitzer, A. Hemodynamic and excretory responses of the neonatal canine kidney to acute volume expansion. Amer. J. Physiol. 237: F392, 1979.

    PubMed  CAS  Google Scholar 

  33. Solomon, S., Hathaway, S., and Curb, D. Evidence that the renal response to volume expansion involves a blood-borne factor. Biol. Neonate 35: 113, 1979.

    Article  PubMed  CAS  Google Scholar 

  34. Edelmann, C.M., Jr., Barnett, H.L., and Troupkou, V. Renal concentrating mechanisms in newborn infants: Effect of dietary protein and water content, role of urea, and responsiveness to antidiuretic hormone. J. Clin. Invest. 39: 1062, 1960.

    Article  PubMed  CAS  Google Scholar 

  35. Edelmann, C.M., Jr., Barnett, H.L., and Stark, H. Effect of urea on concentration of urinary nonurea solute in premature infants. J. Appl. Physiol. 21: 1021, 1966.

    CAS  Google Scholar 

  36. Edwards, B.R., Mendel, D.B., LaRochelle, F.T., Jr., Stern, P., and Valtin, H. Postnatal development of urinary concentrating ability in rats. Changes in renal anatomy and neurohypophysical hormones. First International Workshop on Developmental Renal Physiology, N.Y. 1980.

    Google Scholar 

  37. Horster, M. Discussion. First International Workshop on Developmental Renal Physiology, N.Y. 1980.

    Google Scholar 

  38. Schlondorff, D., Weber, H., Trizna, W., and Fine, L.G. Vasopressin responsiveness of renal adenylate cyclase in newborn rats and rabbits. Amer. J. Physiol. 234: F16, 1978.

    PubMed  CAS  Google Scholar 

  39. Rajerison, R.M., Butlen, D., and Jard, S. Ontogenetic development of antidiuretic hormone receptors in rat kidneys: comparison of hormonal binding and adenylate cyclose activation. Mol. Cell. Endocrin. 4: 271, 1976.

    Article  CAS  Google Scholar 

  40. Burch, H.B., Kuhlman, A.M., Skerjance, J., and Lowry, O.H. Changes in patterns of enzymes of carbohydrate metabolism in the developing rat kidney. Pediatrics 47: 199, 1971 (supplement).

    PubMed  CAS  Google Scholar 

  41. Metcoff, J. Synchrony of organ development contributing to water and electrolyte regulation in early life. Clin. Neph. 1: 107, 1973.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Edelmann, C.M. (1981). Developmental Renal Physiology. In: Gruskin, A.B., Norman, M.E. (eds) Pediatric Nephrology. Developments in Nephrology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8319-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8319-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8321-2

  • Online ISBN: 978-94-009-8319-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics