Correlation between Electrocardiographic and Scintigraphic Findings in Myocardial Infarction

  • P. Rigo
  • J.-P. Smeets
  • V. Legrand
  • C. Rigo-Betz
  • H. E. Kulbertus


The introduction of different imaging modalities to study patients with myocardial infarction has opened up new perspectives in the assessment of the site and extent of myocardial infarction. Thallium myocardial imaging provides multiple two-dimensional representations of myocardial perfusion defects, whether related to ischemia or infarction [1]. The extent of these defects can thus be described both in their axial and transverse dimensions (the latter through visual or tomographic reconstruction), and scintigraphic measurements correlate closely with pathological findings [2]. The scintigraphic extent of perfusion defects also relates closely to the distribution of coronary artery narrowings, and the pattern of scintigraphic defects can be used to predict the distribution of the most severe coronary artery lesions [3].


Left Anterior Descend Proximal Left Anterior Descend Left Ventricular Aneurysm Inferior Myocardial Infarction Distal Left Anterior Descend 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pohost GM, Alpert NM, Ingwall JS, Strauss HW: Thallium redistribution: mechanisms and clinical utility. Semin Nucl Med 10:70–93, 1980.PubMedCrossRefGoogle Scholar
  2. 2.
    Wackers FJTh, Becker AE, Samson G, Busemann Sokole E, Van Der Schoot JB, Vet AJTM, Lie KI, Durrer D, Wellens H: Location and size of acute transmural myocardial infarction estimated from thallium-201 scintiscans: a clinicopathological study. Circulation 56:72–78, 1977.PubMedGoogle Scholar
  3. 3.
    Rigo P, Bailey IK, Griffith LSC, Pitt B, Burow RD, Wagner HN Jr, Becker LC: Value and limitations of segmental analysis of stress thallium myocardial imaging to localize coronary artery disease. Circulation 61:973–981, 1980.PubMedGoogle Scholar
  4. 4.
    Henning H, Schelbert HR, Righetti A, Ashburn WL, O’Rourke RA: Dual imaging with technetium-99m pyrophosphate and thallium-201 for detecting, localizing and sizing myocardial infarction. Am J Cardiol 40:147–155, 1977.PubMedCrossRefGoogle Scholar
  5. 5.
    Wackers FJTh, Lie KI, Busemann Sokole E, Res J, Van der Schoot JB, Durrer D: Pevalence of right ventricular involvement in inferior wall infarction assessed with myocardial imaging with thallium-201 and technetium-99m pyrophosphate. Am J Cardiol 42:358–363, 1978.PubMedCrossRefGoogle Scholar
  6. 6.
    Rude RE, Parkey RW, Bonte FJ, Lewis SE, Twieg D, Buja LM, Willerson JT: Clinical implications of the technetium-99m stannous pyrophosphate myocardial scintigraphic doughnut pattern in patients with acute myocardial infarcts. Circulation 59:721–730, 1979.PubMedGoogle Scholar
  7. 7.
    Rigo P, Murray M, Strauss HW, Pitt B: Scintiphotographic evaluation of patients with suspected left ventricular aneurysm. Circulation 50:985–991, 1974.PubMedGoogle Scholar
  8. 8.
    Rigo P, Reiber HC, Dressler J: Stress thallium-201 myocardial scintigraphy. Review of methodological problems and proposal for standardization. Eur Heart J 1:81–87, 1980.PubMedGoogle Scholar
  9. 9.
    Johnstone DE, Wackers FJTh, Berger HJ, Hoffer PB, Kelley MJ, Gottschalk A, Zaret BL: Effect of patient positioning on left lateral thallium-201 myocardial images. J Nucl Med 20:183–188, 1979.Google Scholar
  10. 10.
    Willerson JC, Parkey RW, Bonte FJ, Meyer SL, Atkins JM, Stokely EM: Technetium stannous pyrophosphate myocardial scintigrams in patients with chest pain of varying etiology. Circulation 51:1046–1052, 1975.PubMedGoogle Scholar
  11. 11.
    Strauss HW, Pitt B: Gated cardiac blood pool scans: use in patients with coronary heart disease. Prog Cardiovasc Dis 20:207–216, 1977.PubMedCrossRefGoogle Scholar
  12. 12.
    Optimal electrocardiography Task Force I: Standardization of terminology and interpretation. Am J Cardiol 41:130–144, 1978.CrossRefGoogle Scholar
  13. 13.
    Rigo P, Bailey IK, Griffith LSC, Pitt B, Wagner HN Jr, Becker LC: Stress thallium-201 myocardial scintigraphy for the detection of individual coronary artery lesions in patients with and without previous myocardial infarction [abstr]. Trans Eur Soc Cardiol 1:35, 1978.Google Scholar
  14. 14.
    Betz-Rigo Ch, Rigo P, Chapelle JP, Demoulin JC, Smeets JP, Kulbertus H: Mesure scintigraphique de la taille de l’infarctus. In: Blanquet P, Ducassou D (eds) Implications pronostiques: XXème Colloque de Médecine Nucléaire de langue française. Université de Bordeaux II; IV:83–84, 1979.Google Scholar
  15. 15.
    Wackers FJTh, Busemann Sokole E, Samson G, Van Der Schoot JB, Lie KI, Liem KL, Wellens HJJ: Value and limitations of thallium-201 scintigraphy in the acute phase of myocardial infarction. N Engl J Med 295:1–5, 1976.PubMedCrossRefGoogle Scholar
  16. 16.
    Wackers FJTh, Busemann Sokole E, Samson G, Van der Schoot JB, Wellens HJJ: Myocardial imaging in coronary heart disease with radionuclide, with emphasis on thallium-201. Eur J Cardiol 41:273–282, 1976.Google Scholar
  17. 17.
    Dunn RF, Bailey IK, Uren R, Kelly DT: Does exercise induced ST elevation localize myocardial ischemia? Exercise thallium-201 imaging and coronary angiography correlation [abstr]. Am J Cardiol 43:398, 1979.Google Scholar

Copyright information

© Martinus Nijhoff Publishers, The Hague 1981

Authors and Affiliations

  • P. Rigo
  • J.-P. Smeets
  • V. Legrand
  • C. Rigo-Betz
  • H. E. Kulbertus

There are no affiliations available

Personalised recommendations