Skip to main content

Biological Markers of the Tumors of the Central Nervous System

  • Chapter
Pediatric Oncology 1

Part of the book series: Cancer Treatment and Research ((CTAR,volume 2))

  • 90 Accesses

Abstract

The concept of biochemical tumor markers began with Warburg’s research on the differences in enzymatic activities between normal and neoplastic tissues from the same organ [1]. His observation that rates of aerobic glycolysis were higher for tumor tissue than for normal, nongrowing tissue was subsequently shown to depend on the degree of differentiation of the tumor [2]. Other enzymatic differences between cancer and normal cells have been reported and were reviewed recently by Weber [2]. Such intracellular differences might be reflected in alterations of the activities of specific enzymes or concentrations of specific biomolecules in physiological fluids. Because the cerebrospinal fluid (CSF) is most directly in contact with central nervous system (CNS) tissue, and because the existence of a blood-brain barrier has long been known, metabolic changes associated with neoplasms of the CNS may be observed earlier and to a greater degree in CSF than in other physiological fluids such as urine or serum. Nevertheless, several published studies on CNS tumor markers in serum and/or urine will be included in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warburg O: The metabolism of tumors. London: Constable, 1930.

    Google Scholar 

  2. Weber G: Enzymology of cancer cells. N Engl J Med 296:486–493 and 541–551, 1977.

    Google Scholar 

  3. Tormey DC, Waalkes TP, Ahmann D, Gehrke CW, Zumwalt RW, Snyder J, Hansen H: Biological markers in breast carcinoma. Cancer 35: 1095–1100, 1975.

    CAS  PubMed  Google Scholar 

  4. Bachrach U: Polyamines as chemical markers of malignancy. Ital J Biochem 25: 77–93, 1976.

    CAS  PubMed  Google Scholar 

  5. Galen RS, Gambino SR: Beyond normality: the predictive value and efficiency of medical diagnosis. New York: John Wiley, 1975.

    Google Scholar 

  6. Galen RS: The normal range: a concept in transition. Arch Pathol Lab Med 101: 561–565, 1977.

    CAS  PubMed  Google Scholar 

  7. Marton LJ: Polyamines and brain tumors. J Natl Cancer Inst (Monog) 46: 127–131, 1977.

    CAS  Google Scholar 

  8. Marton LJ: The potential of cerebrospinal fluid polyamine determinations in the diagnosis and therapeutic monitoring of brain tumors. In: Advances in polyamine research, vol 2, Campbell RA, Morris DR, Bartos D, Daves GD, Bartos F (eds). New York: Raven Press, 1978, pp 257–263.

    Google Scholar 

  9. Herrschaft H: Zur Fruherkennung der Gehirntumoren. Fortschr Neurol Psychiat 45: 383–404, 1977.

    CAS  Google Scholar 

  10. Wollemann M: Biochemistry of brain tumors. Baltimore: University Park Press, 1974.

    Google Scholar 

  11. Goldman RD, Kaplan NO, Hall TC: Lactic dehydrogenase in human neoplasmatic tissues. Cancer Res 24: 389–399, 1964.

    CAS  PubMed  Google Scholar 

  12. Viale GL: Biochemical patterns in brain tumors. I. Enzymes of the glycolysis pathway. Acta Neurochir 20: 263–272, 1969.

    CAS  Google Scholar 

  13. Haglid K, Carlsson CA, Thulin CA: Lactate dehydrogenase isoenzymes and proteins in human gliomas. Neurochirurgica (Stuttgart) 13: 19–28, 1970.

    CAS  Google Scholar 

  14. Timperley WR: Lactate dehydrogenase isoenzymes in tumors of the nervous system. Acta Neuropathol (Berlin) 19: 20–24, 1971.

    CAS  Google Scholar 

  15. Kaplan NO: Symposium on multiple forms of enzymes and control mechanisms. I. Multiple forms of enzymes. Bacteriol Rev 27: 155–169, 1963.

    CAS  PubMed  Google Scholar 

  16. Markert CL: Developmental genetics. Harvey Lect 59: 187–218, 1965.

    CAS  PubMed  Google Scholar 

  17. Wroblewski F, LaDue JS: Lactic dehydrogenase activity in blood. Proc Soc Exp Bio Med 90: 210–213, 1955.

    CAS  Google Scholar 

  18. Bruns FH, Jacob W, Weverinck F: Phosphohexoisomerase, Phosphoriboisomerase und Milchsauredehydrogenase in Liquor cerebrospinalis. Clin Chim Acta 1: 63–66, 1956.

    CAS  PubMed  Google Scholar 

  19. Green JB, Oldewurtel HA, O’Doherty DS, Forster FM: Cerebrospinal fluid transaminase and lactate dehydrogenase activities in neurologic disease. Arch Neurol Psychiatr 80: 148–156, 1958.

    CAS  Google Scholar 

  20. Jakoby RK, Jakoby WB: Lactic dehydrogenase of cerebrospinal fluid in the differential diagnosis of cerebrovascular disease and brain tumor. J Neurosurg 15: 45–51, 1958.

    CAS  PubMed  Google Scholar 

  21. Buckell M, Robertson MC: Enzyme studies in cerebral tumors: lactate dehydrogenase, glucose phosphate isomerase, acid and alkaline phosphatase in plasma, ventricular CSF, and tumor cyst fluid from cases of glioma and cerebral secondary carcinoma. Br J Cancer 19: 83–91, 1965.

    CAS  PubMed  Google Scholar 

  22. King J: A routine method for the estimation of lactic dehydrogenase activity. J Med Lab Tech 16: 265–272, 1959.

    CAS  Google Scholar 

  23. King J: Practical clinical enzymology. London: Van Nostrand, 1965.

    Google Scholar 

  24. Sano K, Chigasaki H, Takakura K: Diagnostic value of LDH isozyme studies in intracranial tumors. In: Proc 3rd Int Congr of Neurological Surgery, DeVet AC, (ed.). Copenhagen Denmark, August 1965. Amsterdam: Excerpta Medica Foundation, 1966, pp 575–579.

    Google Scholar 

  25. Rabow L, Kristensson K: Changes in lactate dehydrogenase isoenzyme patterns in patients with tumors of the central nervous system. Acta Neurochir 36: 71–81, 1977.

    CAS  Google Scholar 

  26. Cunningham VR, Phillips J, Field EJ: Lactic dehydrogenase isoenzymes in normal and pathological spinal fluid. J Clin Pathol 18: 765–770, 1965.

    CAS  PubMed  Google Scholar 

  27. Wroblewski F, Decker B, Wroblewski R: Activity of lactic dehydrogenase in spinal fluid. Am J Clin Pathol 28: 269–271, 1957.

    CAS  PubMed  Google Scholar 

  28. Fleisher GA, Wakim KG, Goldstein NP: Glutamic oxalacetic transaminase and lactic dehydrogenase in serum and cerebrospinal fluid of patients with neurologic disorders. Mayo Clin Proc 32: 188–197, 1957.

    CAS  Google Scholar 

  29. Hain RF, Nutter J: Cerebrospinal fluid enzymes as a function of age. Arch Neurol 2: 331–337, 1960.

    CAS  PubMed  Google Scholar 

  30. Spolter H, Thompson HG: Factors affecting lactic dehydrogenase and glutamic oxalacetic transaminase in cerebrospinal fluid. Neurology (Minneap) 12: 53–59, 1962.

    CAS  Google Scholar 

  31. Wroblewski F: The significance of alterations in lactic dehydrogenase activity of body fluids in the diagnosis of malignant tumors. Cancer 12: 27–39, 1959.

    CAS  PubMed  Google Scholar 

  32. Wroblewski F, Decker B, Wroblewski R: The clinical implications of spinal fluid lactate dehydrogenase activity. N Engl J Med 258: 635–639, 1958.

    CAS  PubMed  Google Scholar 

  33. Green JB, Oldewurtel HA, Forster FM: Glutamic oxalacetic transaminase and lactic dehydrogenase activities. Neurology (Minneap) 9: 540–544, 1959.

    CAS  Google Scholar 

  34. Davies-Jones GAB: Lactate dehydrogenase and glutamic oxalacetic transaminase of the cerebrospinal fluid in tumors of the central nervous system. J Neurol Neurosurg Psychiatr 32: 324–327, 1969.

    CAS  PubMed  Google Scholar 

  35. Vara-Lopez R, Vara-Thorbeck R: Modifications in the activity of some enzymes of the cerebrospinal fluid in patients with intracranial tumors. J Neurosurg 34: 749–752, 1971.

    CAS  PubMed  Google Scholar 

  36. Konshod F: Enzyme activity of cerebrospinal fluid in brain tumors. Med Arch 29: 577–584, 1975.

    Google Scholar 

  37. Dharker SR, Dharker RS, Chaurasia BD: Lactate dehydrogenase and aspartate transaminase of the cerebrospinal fluid in patients with brain tumors, congenital hydrocephalus, and brain abscess. J Neurol Neurosurg Psychiatr 39: 1081–1085, 1976.

    CAS  PubMed  Google Scholar 

  38. Niebroj-Dobosz, I, Hetnarska L: The activity of enzymes in the cerebrospinal fluid in diseases of the nervous system. Pol Med J 8: 451–455, 1969.

    CAS  PubMed  Google Scholar 

  39. Heller W, Oldenkott P, Driesen W, Elies W, Blankenhorn H: Clinical chemical examinations for the early diagnosis of malignant brain tumors. Arztliche Forsch 25: 44–47, 1971.

    CAS  Google Scholar 

  40. Gobiet W: Der diagnostische Wert der LDH-Bestimmung und ihrer Isoenzyme bei intra-krraniellen Prozessen. Z Neurol 202: 247–250, 1972.

    CAS  PubMed  Google Scholar 

  41. Stiffel M, Dittman J, Faulhauer K, Loew F: Liquorenzyme in normalen Proben, bei Hirntumoren und anderen neurologischen Erkrankungen. Wien Z Nervenheilkunde 31: 325–333, 1973.

    CAS  Google Scholar 

  42. Hildebrand J: Early diagnosis of brain metastases in an unselected population of cancerous patients. Eur J Cancer 9: 621–626, 1973.

    CAS  PubMed  Google Scholar 

  43. Hildebrand J, Levin S: Enzymatic activities in cerebrospinal fluid in patients with neurological diseases. Acta Neurol Belg 73: 229–240, 1973.

    CAS  PubMed  Google Scholar 

  44. Engelhardt P, Avenarius HJ: Der diagnostische Wert von Enzymebestimmungen im Liquor cerebrospinalis. Med Klin 71: 699–702, 1976.

    CAS  PubMed  Google Scholar 

  45. Buckell M, Crompton MR, Robertson MC, Barnes GK: Lactate dehydrogenase in cerebral cyst fluids: total activity and isoenzyme distributions as an index of malignancy. J Neurosurg 32: 545–552, 1970.

    CAS  PubMed  Google Scholar 

  46. Katzman R, Fishman RA, Goldensohn ES: Glutamic oxalacetic transaminase activity in spinal fluid. Neurology (Minneap) 7: 853–855, 1957.

    CAS  Google Scholar 

  47. Green JB, Oldewurtel HA, O’Doherty DS, Forster FM, Sanchez-Longo LP: Cerebrospinal fluid glutamic oxalacetic transaminase activity in neurologic disease. Neurology (Minneap) 7: 313–322, 1957.

    CAS  Google Scholar 

  48. Miyazaki M: Glutamic oxalacetic transaminase in cerebrospinal fluid. J Nerv Ment Dis 126: 167–175, 1958.

    Google Scholar 

  49. Karmen A, Wroblewski F, LaDue JS: Transaminase activity in human blood. J Clin Invest 34: 126–131, 1955.

    CAS  PubMed  Google Scholar 

  50. Karmen A: A Note on the spectrophotometric assay of GOT in human blood serum. J Clin Invest 34: 131–133, 1955.

    CAS  PubMed  Google Scholar 

  51. Reitman S, Frankel S: A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28: 56–63, 1957.

    CAS  PubMed  Google Scholar 

  52. King J: A study of human serum transaminases. J Med Lab Tech 17: 1–21, 1960.

    CAS  Google Scholar 

  53. Mann SH, DePasquale N, Patterson R: Cerebrospinal fluid glutamic oxalacetic acid transaminase in patients receiving electroconvulsive therapy and in neurologic disease. Neurology (Minneap) 10: 381–390, 1960.

    CAS  Google Scholar 

  54. Mellick RS, Basset RL: The cerebrospinal fluid glutamic oxalacetic transaminase activity in neurological diseases. Lancet 1: 904–906, 1964.

    CAS  PubMed  Google Scholar 

  55. Bodansky O: Biochemistry of human cancer. New York: Academic Press, 1975.

    Google Scholar 

  56. Sugimura T, Sato S, Kawabe S, Suzuki N, Chien TC, Takakura K: Aldolase C in brain tumor. Nature 222: 1070, 1969.

    CAS  PubMed  Google Scholar 

  57. Kumanishi T, Ikuta F, Yamamoto T: Aldolase isozyme patterns of representative tumors in the human nervous system. Acta Neuropathol 16: 220–225, 1970.

    CAS  PubMed  Google Scholar 

  58. Sato S, Sugimura T, Chien TC, Takakura K: Aldolase isozymes patterns of human brain tumors. Cancer 27: 223–227, 1971.

    CAS  PubMed  Google Scholar 

  59. Chein TC: Aldolase isozymes of human brain tumors. Brain and Nerve (Tokyo) 23: 625–635, 1971.

    Google Scholar 

  60. Tsunematsu K, Shiraishi T: Aldolase isozymes in human tissue and serum. Cancer 24: 637–642, 1969.

    CAS  PubMed  Google Scholar 

  61. Schapira F: The normal aldolase activity of the CSF. Clin Chim Acta 7: 566–571, 1962.

    CAS  PubMed  Google Scholar 

  62. Wolintz AH, Jacobs LD, Christoff N, Solomon M, Chernick N: Serum and cerebrospinal fluid enzymes in cerebrovascular disease. Arch Neurol 20: 54–61, 1969.

    CAS  PubMed  Google Scholar 

  63. Sibley JA, Lehninger AL: Determination of aldolase in animal tissues. J Biol Chem 177: 859–872, 1949.

    CAS  PubMed  Google Scholar 

  64. Blostein R, Rutter WJ: Comparative studies of liver and muscle aldolase. II. Immunochemical and Chromatographie differentiation. J Biol Chem 238: 3280–3285, 1963.

    CAS  PubMed  Google Scholar 

  65. Matsushima T, Kawabe S, Shibuya M, Sugimura T: Aldolase isozymes in rat tumor cells. Biochem Biophys Res Comm 30: 565–570, 1968.

    CAS  PubMed  Google Scholar 

  66. Tschankow IA, Dikow Al: Isoenzymes der Fructose-phosphate aldolase im Liquor cerebrospinalis bei organischen Erkrankungen des Nervensystems. Z Klin Chem Klin Biochem 8: 33–34, 1970.

    CAS  PubMed  Google Scholar 

  67. Man EY: Development of an electrophoretic method for the determination of aldolase isoenzyme patterns in cerebrospinal fluid. Master’s thesis, University of California, San Francisco, 1976.

    Google Scholar 

  68. Bodansky O: Serum Phosphohexose isomerase in cancer. I. Method of determination and establishment of range of normal values. Cancer 7: 1191–1199, 1954.

    CAS  PubMed  Google Scholar 

  69. Thompson HG, Hirschberg E, Ornos M, Gellhorn A: Evaluation of phosphohexose isomerase activity in cerebrospinal fluid in neoplastic disease of the central nervous system. Neurology (Minneap) 9: 545–552, 1959.

    CAS  Google Scholar 

  70. Wilson AT: Urinary lysozyme. I. Identification and measurement. J Pediatr 36: 39–44, 1950.

    CAS  PubMed  Google Scholar 

  71. Osserman EF, Lawlor DP: Serum and urinary lysozyme in monocytic and monomyelocytic leukemia. J Exp Med 124: 921–951, 1966.

    CAS  PubMed  Google Scholar 

  72. Parry RM, Chandan RC, Shahani KM: A rapid and sensitive assay of muramidase. Proc Soc Exp Biol Med 119: 384–386, 1965.

    CAS  PubMed  Google Scholar 

  73. Newman J, Josephson AS, Cacatian A, Tsang A: Spinal fluid lysozyme in the diagnosis of central nervous system tumors. Lancet II: 756–757, 1974.

    Google Scholar 

  74. Johansson BG, Malmquist J: Quantitative immunochemical determination of lysozyme in serum and urine. Scand J Clin Lab Invest 27: 255–261, 1971.

    CAS  PubMed  Google Scholar 

  75. Rabe EF, Curnen EC: The occurence of lysozyme in the cerebrospinal fluid and serum of infants and children. J Pediatr 38: 147–153, 1951.

    CAS  PubMed  Google Scholar 

  76. Hankeiwicz J, Swierczek E: Lysosyme in human body fluids. Clin Chim Acta 57: 205–209, 1974.

    Google Scholar 

  77. DiLorenzo N, Palma L: Spinal fluid lysozyme in diagnosis of central nervous system tumors. Lancet 1: 1077, 1976.

    CAS  Google Scholar 

  78. Reitamo S, Klockars M: Lysozyme activity in cerebrospinal fluid. Acta Med Scand 199: 321–325, 1976.

    CAS  PubMed  Google Scholar 

  79. Constantopoulos A., Antonakakis K, Matsaniotis N, Kapsalakis Z: Spinal fluid lysozyme in the diagnosis of central nervous system tumors. Neurochirurgie 19: 174–178, 1976.

    Google Scholar 

  80. DiLorenzo N, Palma L, Ferrante L: Cerebrospinal fluid lysozyme activity in patients with central nervous system tumors. Neurochirurgie 20: 19–22, 1977.

    CAS  Google Scholar 

  81. Mason DY, Roberts-Thompson P: Spinal fluid lysozyme in diagnosis of central nervous system tumors. Lancet 11: 952–953, 1974.

    Google Scholar 

  82. Hansen NE, Karle H, Jensen A, Bock E: Lysozyme activity in cerebrospinal fluid. Acta Neurol Scand 55: 418–424, 1977.

    CAS  PubMed  Google Scholar 

  83. Tanzer ML, Gilvarg C: Creatine and creatine kinase measurement. J Biol Chem 234: 3201–3204, 1959.

    CAS  PubMed  Google Scholar 

  84. Hughes BP: A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activities in normal and pathological serum. Clin Chim Acta 7: 597–603, 1962.

    CAS  PubMed  Google Scholar 

  85. Herschkowitz N, Cumings JN: Creatine kinase in cerebrospinal fluid. J Neurol Neurosurg Psychiatr 27: 247–250, 1964.

    CAS  PubMed  Google Scholar 

  86. Bell RD, Rosenberg RN, Ting R, Mukherjee A, Stone MJ, Willerson JT: Creatine kinase BB isoenzyme levels by radioimmunoassay in patients with neurologic disease. Anal Neurol 3: 52–59, 1978.

    CAS  Google Scholar 

  87. Wolfson SK, Williams-Ashman HG: Isocitric and 6-phosphogluconic dehydrogenase in human blood serum. Proc Soc Exp Biol Med 96: 231–234, 1957.

    CAS  PubMed  Google Scholar 

  88. Van Rymenant M, Robert J: Enzymes in cancer. II. The isocitrate dehydrogenase of the cerebrospinal fluid in various cancerous and noncancerous conditions. Cancer 13: 878–881, 1960.

    Google Scholar 

  89. Van Rymenant M, Robert J, Otten J: Isocitrate dehydrogenase in the cerebrospinal fluid—clinical usefulness of its determination. Neurology (Minneap) 16: 351–354, 1966.

    Google Scholar 

  90. Anylan AJ, Gamble J, Hoster HA: β-Glucuronidase activity of the white blood cells in human leukemias and Hodgkin’s disease. Cancer 3: 116–123, 1950.

    Google Scholar 

  91. Fishman WH, Anlyan AJ: β-Glucuronidase activity in human tissues. Cancer Res 7: 808–817, 1947.

    CAS  PubMed  Google Scholar 

  92. Anlyan AJ, Starr A: β-Glucuronidase activity of spinal and ventricular fluids in humans. Cancer 5: 578–580, 1952.

    CAS  PubMed  Google Scholar 

  93. Fishman WH, Springer B, Brunetti R: Application of an improved glucuronidase assay method to the study of human blood β-glucuronidase. J Biol Chem 173: 449–456, 1948.

    CAS  PubMed  Google Scholar 

  94. Fleisher M, Schold C, Schwartz MK, Posner J: Tumor markers in cerebrospinal fluid for the differential diagnosis of central nervous system metastasis. Clin Chem 24: 1002, 1978.

    Google Scholar 

  95. Rutenberg AM: LAP activity-observations in patients with cancer of the pancreas and other disease. N Engl J Med 259: 469–472, 1958.

    Google Scholar 

  96. Goldbarg JA: The colorimetric determination of LAP in urine and serum of normal subjects and patients with cancer and other diseases. Cancer 11: 283–291, 1958.

    CAS  PubMed  Google Scholar 

  97. Green JB, Perry M: Leucine aminopeptidase activity in cerebrospinal fluid. Neurology (Minneap) 13: 924–926, 1963.

    CAS  Google Scholar 

  98. Frithz G, Ericsson P, Ronquist G: Serum adenylate kinase activity in the early phase of acute myocardial infarction. Upsala J Med Sci 81: 155–158, 1976.

    CAS  PubMed  Google Scholar 

  99. Ronquist G, Ericsson P, Frithz G, Hugosson R: Malignant brain tumors associated with adenylate kinase in cerebrospinal fluid. Lancet 1: 1284–1286, 1977.

    CAS  PubMed  Google Scholar 

  100. Frithz G, Ericsson P, Ronquist G: Adenylate kinase activity in cerebrospinal fluid in connection with transitory ischemic attacks. Upsala J Med Sci 82: 11–14, 1977.

    CAS  PubMed  Google Scholar 

  101. Ronquist G, Frithz G: Adenylate kinase activity and glutathione concentration of cerebrospinal fluid in different neurological disorders. Eur Neurol 18: 106–110, 1979.

    CAS  PubMed  Google Scholar 

  102. Getaz EP, Bhargava A, Fitzpatrick J: Adenylate kinase in central nervous system malignancy. Lancet II: 146, 1979.

    Google Scholar 

  103. Hultberg B, Olsson JE: Diagnostic value of determinations of lysosomal hydrolases in CSF of patients with neurological diseases. Acta Neurol Scand 57: 201–215, 1978.

    CAS  PubMed  Google Scholar 

  104. Cuatico W, Woldron R, Tyschenko W: Biochemical evidence for viral-like characteristics in CSF of brain tumor patients. Cancer 39: 2240–2246, 1977.

    CAS  PubMed  Google Scholar 

  105. Cuatico W, Cho JR, Spiegelman S: Particles with RNA of high molecular weight and RNA-directed DNA polymerase in human brain tumors. Proc Natl Acad Sci USA 70: 2789–2793.

    Google Scholar 

  106. Cuatico W, Cho JR: Preliminary evidence for the existence of RNA-directed DNA polymerase and high molecular weight RNA in human brain tumor tissue culture supernatants. Biochem Exp Biol 12: 161–165, 1976.

    CAS  Google Scholar 

  107. Bachrach U: Function of naturally occurring polyamines. New York: Academic Press, 1973.

    Google Scholar 

  108. Caldarera CM: A tribute to G. Moruzzi. Ital J Biochem 25: 5–114, 1976.

    Google Scholar 

  109. Cohen SS: Introduction to the polyamines. Englewood Cliffs, N.J.: Prentice Hall, 1971.

    Google Scholar 

  110. Janne J, Poso H, Raina A: Polyamines in rapid growth and cancer. Biochim Biophys Acta 473: 241–293, 1978.

    CAS  PubMed  Google Scholar 

  111. Morris DR, Filiingame RH: Regulation of amino acid decarboxylation. Ann Rev Biochem 43: 303–325, 1974.

    CAS  PubMed  Google Scholar 

  112. Raina A, Janne J: Physiology of the natural polyamines putrescine, spermidine, and spermine. Med Biol 53: 121–147, 1975.

    CAS  PubMed  Google Scholar 

  113. Russell DH: Polyamines in normal and neoplastic growth. New York: Raven Press. 1973.

    Google Scholar 

  114. Stevens I: The biochemical role of naturally occurring polyamines in nucleic acid synthesis. Biol Rev 45: 1–27, 1970.

    CAS  PubMed  Google Scholar 

  115. Tabor H, Tabor CW: Spermine, spermidine and related amines. Pharmacol Rev 16: 245–300, 1964.

    CAS  PubMed  Google Scholar 

  116. Tabor H, Tabor CW: Biosynthesis and metabolism of 1,4-diaminobutane, spermidine, spermine, and related amines. Adv Enzymol 36: 203–268, 1972.

    CAS  PubMed  Google Scholar 

  117. Tabor CW, Tabor H: M-diaminobutane (putrescine), spermidine, and spermine. Ann Rev Biochem 45: 285–306, 1976.

    CAS  PubMed  Google Scholar 

  118. Heby O, Marton LJ, Wilson CB, Martinez HM: Polyamine metabolism in a rat brain tumor cell line: its relationship to the growth rate. J Cell Physiol 86: 511–522, 1975.

    CAS  PubMed  Google Scholar 

  119. Heby O, Marton LJ, Zardi L, Russell DH, Baserga R: Accumulaton of Polyamines after Stimulation of cellular proliferation in human diploid fibroblasts. In: The cell cycle in malignancy and immunity, Hampton JD (ed.). Springfield, Va: National Technical Information Service, 1975, pp 50–66.

    Google Scholar 

  120. Russell DH, Levy CC, Schimpf SC, Hawk IA: Urinary polyamines in cancer patients. Cancer Res 31: 1555–1558, 1971.

    CAS  PubMed  Google Scholar 

  121. Dreyfuss F, Chayen R, Dreyfuss G: Polyamine excretion in the urine of cancer patients. Isr J Med Sci 11: 785–795, 1975.

    CAS  PubMed  Google Scholar 

  122. Sanford EJ, Drago JR, Rohner TJ: Preliminary evaluation of urinary polyamines in the diagnosis of genitourinary tract malignancy. J Urol 113: 218–221, 1975.

    CAS  PubMed  Google Scholar 

  123. Townsend RM, Banda PW, Marton LJ: Polyamines in malignant melanoma; urinary excretion and disease progress. Cancer 38: 2088–2092, 1976.

    CAS  PubMed  Google Scholar 

  124. Waalkes TP, Gehrke CW, Tormey DC, Zumwalt RW, Hueser JN, Kuo KC, Lakings DB, Ahmann DL, Moertel CG: Urinary excretion of polyamines by patients with advanced malignancy. Cancer Chemother Rep 59: 1103–1116, 1975.

    CAS  PubMed  Google Scholar 

  125. Bartos F, Bartos D, Grettie DP, Campbell RA, Marton LJ, Smith RG, Daves GD: Polyamine levels in normal human serum: comparison of analytical methods. Biochem Biophys Res Comm 75: 915–919, 1977.

    CAS  PubMed  Google Scholar 

  126. Marton LJ, Vaughn JG, Hawk IA, Levy CC, Russell DH: Elevated polyamine levels in serum and urine of cancer patients: detection by a rapid automated technique utilizing an amino acid analyzer. In: Polyamines in normal and neoplastic growth, Russell DH (ed.). New York: Raven Press, 1973, pp 367–372.

    Google Scholar 

  127. Nishioka K, Romsdahl MM: Elevation of putrescine and spermidine in sera of patients with solid tumors. Clin Chim Acta 57: 155–161, 1974.

    CAS  PubMed  Google Scholar 

  128. Seiler N: Assay procedures for polyamines in urine, serum, and cerebrospinal fluid. Clin Chem 23: 1519–1526, 1977.

    CAS  PubMed  Google Scholar 

  129. Denton MD, Glazer HS, Zellner DC, Smith FG: Gas chromatographic measurement of urinary polyamines in cancer patients. Clin Chem 19: 904–907, 1973.

    CAS  PubMed  Google Scholar 

  130. Gehrke CW, Kuo KC, Zumwalt RW, Waalkes TP: The determination of polyamines in urine by gas liquid chromatography. In: Polyamines in normal and neoplastic growth, Russell DH (ed.). New York: Raven Press, 1973, pp 343–354.

    Google Scholar 

  131. Makita M, Yamamoto S, Kono M: Rapid determination of di- and polyamines human urine by electron capture gas chromatography. Clin Chim Acta 61: 403–405, 1975.

    CAS  PubMed  Google Scholar 

  132. Seiler N, Weichmann M: Die Mikrobestimmung von Spermin und Spermidin als 1-Dime-thylamino-naphthalin-5-sulfonsaure-derivate. Hoppe Seyler’s Z Physiol Chem 348: 1285–1290, 1967.

    CAS  PubMed  Google Scholar 

  133. Smith RG, Daves GD: Gas chromatography-mass spectrometry analysis of polyamines using deuterated analogs as internal standards. Biomed Mass Spectrom 4: 146–151, 1977.

    CAS  PubMed  Google Scholar 

  134. Walle T: Gas chromatography-mass spectrometry of di- and polyamines in human urine. In: Polyamines in normal and neoplastic growth, Russell DH (ed.). New York: Raven Press, 1973, pp 355–366.

    Google Scholar 

  135. Abe F, Samejima K: A new fluorometric method for the determination of spermidine and spermine in tissues by thin layer chromatography. Anal Biochem 67: 298–308, 1975.

    CAS  PubMed  Google Scholar 

  136. Dreyfuss G, Dvir R, Harell A, Chayen R: Determination of polyamines in urine. Clin Chim Acta 49: 65–72, 1973.

    CAS  PubMed  Google Scholar 

  137. Heby O, Andersson G: Simplified micro method for the quantitative analysis of putrescine, spermidine, and spermine in urine. J Chromatog 145: 73–80, 1978.

    CAS  Google Scholar 

  138. Seiler N, Wiechmann M: TLC analysis of amines as their DANS-derivatives. In: Progress in thin-layer chromatography and related methods, Niederwieser A, Pataki G (eds.) Ann Arbor, Mich.: Humphrey Science, 1970, pp 94–144.

    Google Scholar 

  139. Bachrach U, Reches B: Enzymatic assay for spermine and spermidine. Anal Biochem 17: 38–48, 1966.

    CAS  PubMed  Google Scholar 

  140. Harik SI, Pasternak GW, Snyder SH: An enzymatic isotopic microassay for putrescine. Biochem Biophys Acta 304: 753–764, 1973.

    CAS  PubMed  Google Scholar 

  141. Abdel-Monem MM, Ohno K: Separation of the DNS derivatives of polyamines and related compounds by thin layer and high pressure liquid chromatography. J Chromatog 107: 416–419, 1975.

    CAS  Google Scholar 

  142. Hayashi T, Sugiura T, Kawai S, Ohno T: High speed liquid chromatographic determination of putrescine, spermidine, and spermine in human urine. J Chromatog 145: 141–146, 1978.

    CAS  Google Scholar 

  143. Newton NE, Ohno K, Abdel-Monem MM: Determination of diamines and polyamines in tissues by high pressure liquid chromatography. J Chromatog 124: 277–285, 1976.

    CAS  Google Scholar 

  144. Seiler N, Knodgen B: Determination of di- and polyamines by high-performance liquid chromatography separation of their 5-dimethylaminonaphthalene-l-sulfonyl derivatives. J Chromatog 145: 29–39, 1978.

    CAS  Google Scholar 

  145. Gehrke CW, Kuo KC, Ellis RL: Polyamines: an improved automated ion exchange method. J Chromatog 143: 345–361, 1977.

    CAS  Google Scholar 

  146. Marton LJ, Heby O, Wilson CB: A method for the determination of polyamines in cerebrospinal fluid. FEBS Lett 46: 305–307, 1974.

    CAS  PubMed  Google Scholar 

  147. Marton LJ, Lee PLY: More sensitive automated detection of polyamines in physiological fluids and tissue extracts with o-phthaldehyde. Clin Chem 21: 1721–1724, 1975.

    CAS  PubMed  Google Scholar 

  148. Bartos D, Campbell RA, Bartos F, Grettie DP: Direct determination of polyamines in human serum by radioimmunoassay. Cancer Res 35: 2056–2060, 1975.

    CAS  PubMed  Google Scholar 

  149. Bartos F, Bartos D: Antipolyamine antibodies. In: Advances in polyamine research, vol 2, Campbell RA, Morris DR, Bartos D, Davies GD, Bartos F (eds). New York: Raven Press, 1978, pp 65–70.

    Google Scholar 

  150. Kremzner LT:Polyamine metabolism in normal and neoplastic neural tissue. In: Polyamines in normal and neoplastic growth, Russell DH (ed.). New York: Raven Press, 1973, pp 27–40.

    Google Scholar 

  151. Marton LJ, Heby O, Wilson CB: Increased polyamine concentrations in the CSF of patients with brain tumors. Int J Cancer 14: 731–735, 1974.

    CAS  PubMed  Google Scholar 

  152. Marton LJ, Heby O, Levin VA, Lubich WP, Crafts DC, Wilson CB: The relationship of polyamines in cerebrospinal fluid to the presence of central nervous system tumors. Cancer Res 36: 973–977, 1976.

    CAS  PubMed  Google Scholar 

  153. Terabayashi T: Blood levels of polyamines in patients with brain tumor. Neurol Med Chir (Tokyo) 16: 43–50, 1976.

    Google Scholar 

  154. Terabayashi T, Tanimura K: Determination of blood polyamines in patients with brain tumor. Neurol Surg (Tokyo) 4: 1051–1056, 1976.

    CAS  Google Scholar 

  155. Rennert OM, Lawson DL, Shukla JB, Miale TD: Cerebrospinal fluid polyamine monitoring in CNS leukemia. Clin Chim Acta 75: 365–369, 1977.

    CAS  PubMed  Google Scholar 

  156. Yap BS, Yap HY, Nishioka K, Bodey GP: Cerebrospinal fluid polyamines and carcino-embryonic antigen in meningeal carcinomatosis. Proc Am Assoc Cancer Res 20: 187, 1979.

    Google Scholar 

  157. Marton LJ, Edwards MS, Levin VA, Lubich WP, Wilson CB: Predictive value of cerebrospinal fluid polyamines in medulloblastoma. Cancer Res 39: 993–997, 1979.

    CAS  PubMed  Google Scholar 

  158. Marton LJ, Edwards MS, Levin VA, Lubich WP, Wilson CB: CSF polyamines: a new and important means of monitoring medulloblastoma. Cancer (in press).

    Google Scholar 

  159. Fulton DS, Levin VA, Lubich WP, Wilson CB, Marton LJ: Cerebrospinal fluid polyamines in patients with glioblastoma multiforme and anaplastic astrocytoma. Cancer (in press).

    Google Scholar 

  160. Cohen SS: Conference on polyamines in cancer. Cancer Res 37: 939–942, 1977.

    Google Scholar 

  161. Durie BGM, Salmon SE, Russell DH: Polyamines as markers of response and disease activity in cancer chemotherapy. Cancer Res 37: 214–221, 1977.

    CAS  PubMed  Google Scholar 

  162. Russell DH, Durie BGM, Salmon SE: Polyamines as predictors of success and failure in cancer chemotherapy. Lancet II: 797–799, 1975.

    Google Scholar 

  163. Russell DH: Clinical relevance of polyamines as biochemical markers of tumor kinetics. Clin Chem 23: 22–27, 1977.

    CAS  PubMed  Google Scholar 

  164. Schimpff SC, Levy CC, Hawk IA, Russell DH: Polyamines: potential role in the diagnosis, prognosis, and therapy of patients with cancer. In: Polyamines in normal and neoplastic growth, Russell DH (ed.). New York: Raven Press, 1973, pp 395–403.

    Google Scholar 

  165. Woo KB, Simon RM: A quantitative model for relating tumor cell number to polyamine concentrations. In: Polyamines in normal and neoplastic growth, Russel DH (ed.). New York: Raven Press, 1973, pp 381–393.

    Google Scholar 

  166. Woo KB, Enagonio RD: A quantitative analysis of biological marker synthesis in tumor cell cycle. Clin Chem 23: 1409–1415, 1977.

    CAS  PubMed  Google Scholar 

  167. Seidenfeld J, Marton LJ: Biochemical markers of central nervous system tumors in cerebrospinal fluid. Ann Clin Lab Sci 8: 459–466, 1978.

    CAS  PubMed  Google Scholar 

  168. Seidenfeld J, Marton LJ: Biochemical markers of central nervous system tumors measured in cerebrospinal fluid and their potential use in diagnosis and patient management: a review. J Natl Cancer Inst 63: 919–931, 1979.

    CAS  PubMed  Google Scholar 

  169. Steinberg D, Avigan J: Studies of cholesterol biosynthesis. II. The role of desmosterol in the biosynthesis of cholesterol. J Biol Chem 235: 3127–3129, 1960.

    CAS  Google Scholar 

  170. Avigan J, Steinberg D, Vroman H, Thompson MJ, Mosettig E: Studies of cholesterol biosynthesis. I. The identification of desmosterol in serum and tissue of animals and man treated with MER-29. J Biol Chem 235: 3123–3126, 1960.

    CAS  PubMed  Google Scholar 

  171. Fumagalli R, Grossi E, Paoletti P, Paoletti R: Studies on lipids in brain tumors. I. Occurrence and significance of sterol precursors of cholesterol in human brain tumors. J Neuro-chem 11: 561–565, 1974.

    Google Scholar 

  172. Weiss JF: Sterols and other lipids in tumors of the nervous system. Prog Biochem Pharmacol 10: 227–268, 1975.

    CAS  PubMed  Google Scholar 

  173. Paoletti P, Fumagalli R, Grossi-Paoletti E: Drugs acting on brain tumor sterols. In: The experimental biology of brain tumors, Kirsch WM, Grossi-Paoletti E, Paoletti P (eds). Springfield, 111.: Charles C. Thomas, 1972, pp 457–479.

    Google Scholar 

  174. Fumagalli R, Grossi-Paoletti E, Paoletti P, Paoletti R: Lipids in brain tumors. II. Effect of triparanol and 20, 25-diazacholesterol on sterol composition in experimental and human brain tumors. J Neurochem 13: 1005–1010, 1966.

    CAS  PubMed  Google Scholar 

  175. Fumagalli R, Grossi-Paoletti E, Paoletti R, Paoletti P: Sterol metabolism in brain tumors and cerebrospinal fluid. Ann N Y Acad Sci 159: 472–479, 1969.

    CAS  Google Scholar 

  176. Wolfman L, Sachs BA: Separation of cholesterol and desmosterol by thin layer chromatography. J Lipid Res 5: 127–128, 1964.

    CAS  Google Scholar 

  177. Fumagalli R, Capella P, Vandenheuvel WJA: Gas Chromatographic determination of cholesterol-desmosterol ratios. Anal Biochem 10: 377–386, 1965.

    CAS  Google Scholar 

  178. Vandenheuvel FA, Fumagalli R, Paoletti R, Paoletti P: A possible biochemical procedure for the diagnosis of human brain tumor. Life Sci 6: 439–444, 1967.

    CAS  PubMed  Google Scholar 

  179. Fumagalli R, Paoletti P: Sterol test for human brain tumors: relationship with different oncotypes. Neurology (Minneap) 21: 1149–1156, 1971.

    CAS  Google Scholar 

  180. Weiss JF, Ransohoff J, Kayden HJ: Cerebrospinal fluid sterols in patients undergoing treatment for gliomas. Neurology (Minneap) 22: 187–193, 1972.

    CAS  Google Scholar 

  181. Marton LJ, Gordan GS, Barker M, Wilson CB, Lubich W: Failure to demonstrate desmosterol in spinal fluid of brain tumor patients. Arch Neurol 28: 137–138, 1973.

    CAS  PubMed  Google Scholar 

  182. Paoletti P, Vandenheuvel FA, Fumagalli R, Paoletti R: The sterol test for the diagnosis of human brain tumors. Neurology (Minneap) 19: 190–197, 1969.

    CAS  Google Scholar 

  183. Paoletti P. Fumagalli R, Weiss JF, Pezzotta S: Desmosterol: a biochemical marker of glioma growth. Surg Neurol 8: 399–405, 1977.

    CAS  PubMed  Google Scholar 

  184. Weiss J, Ransohoff J, Kayden H: Evaluation of patients undergoing therapy for gliomas by examination of CSF sterols after triparanol treatment. Trans Am Neurol Assoc 96: 324–326, 1971.

    CAS  PubMed  Google Scholar 

  185. Weiss JF, Cravioto H, Bennet K, Weiss E, Ransohoff J: Desmosterol in human and experimental brain tumors in tissue culture. Arch Neurol 33: 180–182, 1976.

    CAS  PubMed  Google Scholar 

  186. Fumagalli R, Paoletti P, Pezzotta S: The desmosterol test in the diagnosis of recurrent cerebral tumors. Acta Neurol (Naples) 28: 268–274, 1973.

    CAS  Google Scholar 

  187. Fumagalli R, Pezzotta S, Racca AR, Paoletti P: Sterols in cerebrospinal fluid during nitrosourea chemotherapy of human brain tumors. Pharmacol Res Comm 8: 127–141, 1976.

    CAS  Google Scholar 

  188. Paoletti P, Pezzotta S, Racca AR, Fumagalli R: Chemotherapy of human nervous system tumors: influence on cerebrospinal fluid sterols. Natl Cancer Inst Monogr 46: 125–126, 1977.

    CAS  PubMed  Google Scholar 

  189. Ransohoff J, Weiss J: Cerebrospinal fluid sterols in the evaluation of patients with gliomas. Natl Cancer Inst Monogr 46: 119–124, 1977.

    CAS  PubMed  Google Scholar 

  190. Tichy J: Cholesterol in the cerebrospinal fluid: an analysis of 447 neurological patients. Rev Czech Med 12: 265–271, 1966.

    CAS  PubMed  Google Scholar 

  191. Fleisher JH, Marton LJ, Bachur NR, Mann-Kaplan RS: Cholesterol in cerebrospinal fluid of brain tumor patients. Life Sci 13: 1517–1526, 1973.

    CAS  PubMed  Google Scholar 

  192. Tashima CK, Timberger R, Burdick R, Leavy M, Rawson RW: Cerebrospinal fluid titer of chorionic gonadotrophin in patients with intracranial metastatic choriocarcinoma. J Clin Endocrinol Metab 25: 1493–1495, 1965.

    CAS  PubMed  Google Scholar 

  193. Rushworth AGJ, Orr AH, Bagshawe KD: The concentration of HCG in the plasma and spinal fluid of patients with trophoblastic tumors in the central nervous system. Br J Cancer 22: 253–257, 1968.

    CAS  PubMed  Google Scholar 

  194. Bagshawe, KD, Harland S: Detection of intracranial tumors with special reference to immunodiagnosis. Proc Roy Soc Med 69: 51–53, 1976.

    CAS  PubMed  Google Scholar 

  195. Bagshawe KD, Harland S: Immunodiagnosis and Monitoring of gonadotropin producing metastases in the central nervous system. Cancer 38: 112–118, 1976.

    CAS  PubMed  Google Scholar 

  196. Kaye SB, Bagshawe KD, McElwain TJ, Peckham MJ: Brain metastases in malignant teratoma: a review of four years’ experience and an assessment of the role of tumor markers. Br J Cancer 39: 217–223, 1979.

    CAS  PubMed  Google Scholar 

  197. Vugrin D, Nisselbaum J, Schold C, Posner J, Cvitkovic E, Schwartz M, Golbey R: Blood and cerebrospinal fluid tumor markers in the diagnosis of brain metastases from testicular carcinoma. Proc Am Assoc Cancer Res 20: 115, 1979.

    Google Scholar 

  198. Allen JC, Nisselbaum J, Epstein F, Rosen G, Schwartz MK: Alphafetoprotein and human chorionic gonadotropin determination in cerebrospinal fluid: an aid to the diagnosis and management of intracranial germ-cell tumors. J Neurosurg 51: 368–374, 1979.

    CAS  PubMed  Google Scholar 

  199. Jordan RM, Kendall JW, Seaich JL, Allen JP, Paulsen CA, Kerber CW, Vanderlaan WP: Cerebrospinal fluid hormone concentration in the evaluation of pituitary tumors. Ann Intern Med 85: 49–55, 1976.

    CAS  PubMed  Google Scholar 

  200. Schroeder LL, Johnson JC, Malarkey WB: Cerebrospinal fluid prolactin: a reflection of abnormal prolactin secretion in patients with pituitary tumors. J Clin Endocrinol Metab 43: 1255–1260, 1968.

    Google Scholar 

  201. Jordan RM, McDonald SD, Stevens EA, Kendall JW: Cerebrospinal fluid prolactin: a reevaluation. Arch Intern Med 139: 208–211, 1979.

    CAS  PubMed  Google Scholar 

  202. Manno NJ, McGuckin WF, Goldstein NP: Cerebrospinal fluid total polysaccharide in diseases of the nervous system. Neurology (Minneap) 15: 45–55, 1965.

    Google Scholar 

  203. Cramer H, Goodwin FK, Post RM, Bunney WE Jr: Effects of probenecid and exercise on cerebrospinal fluid cyclic AMP in affective illness. Lancet I: 1346–1347, 1972.

    Google Scholar 

  204. Cramer H, Ng LKY, Chase TN: Adenosine-3′, 5′-monophosphate in cerebrospinal fluid: effect of drugs and neurologic disease. Arch Neurol 29: 197–199, 1973.

    CAS  PubMed  Google Scholar 

  205. Heikkinen ER, Myllyla VV, Vapaatalo H, Hokkanen E: Urinary excretion and cerebrospinal fluid concentration of cyclic adenosine-3′, 5′-monophosphate in various neurological diseases. Eur Neurol 11: 270–280, 1974.

    CAS  PubMed  Google Scholar 

  206. Myllyla VV, Heikkinen ER, Vapaatalo H, Hokkanen E: Cyclic AMP concentration and enzyme activities of cerebrospinal fluid in patients with epilepsy or central nervous system damage. Eur Neurol 13: 123–130, 1975.

    CAS  PubMed  Google Scholar 

  207. Heikkinen ER, Myllyla VV, Hokkanen E, Vappaatalo H: Cerebrospinal fluid concentration of cyclic AMP in cerebrovascular diseases. Eur Neurol 14: 129–137, 1976.

    CAS  PubMed  Google Scholar 

  208. Furman MA, Shulman K: Cyclic AMP and adenyl cyclase in brain tumors. J Neurosurg 46: 477–483, 1977.

    CAS  PubMed  Google Scholar 

  209. Rudman S, O’Brien MS, McKinney AS, Hoffman JC Jr, Patterson JH: Observations on the cyclic nucleotide concentrations in human cerebrospinal fluid. J Clin Endrocrinol Metab 42: 1088–1097, 1976.

    CAS  Google Scholar 

  210. Trabucci M, Cerri C, Spano PF, Kumakura K: Guanosine-3′, 5′-monophosphate in the CSF of neurological patients. Arch Neurol 34: 12–13, 1977.

    Google Scholar 

  211. Porta M, Bareggi SR, Collice M, Ferrara M, Calderini G, Morselli PL: Determination of HVA and 5-HIAA in ventricular CSF of patients with brain tumors. J Neurosurg Sci 18: 157–163, 1974.

    CAS  PubMed  Google Scholar 

  212. Collice M, Porta M, Ferra M, Castelli A: Mediatori cerebralli, e neoplasie endocraniche. Acta Neurol (Naples) 30: 71–77, 1975.

    CAS  Google Scholar 

  213. Bareggi SR, Porta M, Collice M, Calderini G, Ferrara M, Morselli PL: Monoamine acid metabolites in ventricular CSF of patients with brain tumors. Acta Neurochir 35: 161–170, 1976.

    CAS  Google Scholar 

  214. Weisz R, Mars H: Deoxyribonucleic acid determination in human cerebrospinal fluid. Ann Neurol 2: 357, 1977.

    CAS  PubMed  Google Scholar 

  215. Cumings JN: The examination of the cerebrospinal fluid and cerebral cyst fluid by paper strip electrophoresis. J Neurol Neurosurg Psychiatr 16: 152–157, 1953.

    CAS  PubMed  Google Scholar 

  216. Girke W, Kovarik J: Electrophoretic investigations on protein components in the cerebrospinal fluid of brain tumor patients. Arch Psychiatr Nervenkr 214: 72–79, 1971.

    CAS  PubMed  Google Scholar 

  217. Neuwelt EA, Garcia JH, Kolar O, Rao K, Ducker T: Elevated CSF gamma globulins with cerebral glioma. Surg Neurol 8: 107–110, 1977.

    CAS  PubMed  Google Scholar 

  218. Zlotnick A, Weisenberg E, Chowers I: Mukoproteins of cerebrospinal fluid and blood in neurologic disorders. J Lab Clin Med 54: 207–212, 1959.

    CAS  PubMed  Google Scholar 

  219. Dencker SJ, Bronnestam R, Swahn B: Demonstration of large blood proteins in cerebrospinal fluid. Neurology (Minneap) 11: 441–444, 1961.

    CAS  Google Scholar 

  220. Alsabti E, Keating M, Cabanillas F, Mavligit G: Early diagnosis of central nervous system leukemia and lymphoma by radioimmunoassay of β-microglobulin in the cerebrospinal fluid. Proc Am Assoc Cancer Res 20: 190, 1979.

    Google Scholar 

  221. Starmans JJP, Vos J, Vanderhelm HJ:The β 2-microglobulin content of the cerebrospinal fluid in neurological disease. J Neurol Sci 33: 45–49, 1977.

    CAS  PubMed  Google Scholar 

  222. Swahn B, Bronnestam R, Dencker SJ: On the origin of the lipoproteins in the cerebrospinal fluid. Neurology (Minneap) 11: 437–440, 1961.

    CAS  Google Scholar 

  223. Schuller E, Delasnerie N, Helary M, Lefevre M: Serum and cerebrospinal fluid IGM in 203 neurological patients. Eur Neurol 17: 77–82, 1977.

    Google Scholar 

  224. Wu KK, Jacobsen CD, Hoak JC: Plasminogen in normal and abnormal human cerebrospinal fluid. Arch Neurol 28: 64–66, 1973.

    CAS  PubMed  Google Scholar 

  225. Berglund G, Greter J, Lindstedt S, Steen G, Waldenstrom J, Wass U: Urinary excretion of thymine and uracil in a two year old child with a malignant tumor of the brain. Clin Chem 25: 1325–1328, 1979.

    CAS  PubMed  Google Scholar 

  226. Enna SJ, Stern LZ, Wastek GJ, Yamamura HI: Cerebrospinal fluid γ-aminobutyric acid variations in neurologic disorders. Arch Neurol 34: 683–685, 1977.

    CAS  PubMed  Google Scholar 

  227. Bohlen P, Schechter PJ, Van Damme W, Coquillat G, Dosch J-C, Koch-Weser J: Automated assay of γ-aminobutyric acid in human cerebrospinal fluid. Clin Chem 24: 256–260, 1978.

    CAS  PubMed  Google Scholar 

  228. Wood JH, Gleaser BS, Enna ST, Hare TA: Verification and quantification of GABA in human cerebrospinal fluid. J Neurochem 30: 291–293, 1978.

    CAS  PubMed  Google Scholar 

  229. Faull KF, DoAmaral JR, Berger PA, Barchas JD: Mass spectrometric identification and selected ion monitoring quantification of γ-aminobutyric acid in human lumbar cerebrospinal fluid. J Neurochem 31: 1119–1122, 1978.

    CAS  PubMed  Google Scholar 

  230. Bala Manyam NV, Hare TA, Katz L, Glaeser BS: Huntington’s disease: cerebrospinal fluid GABA levels in at-risk individuals. Arch Neurol 35: 728–730, 1978.

    Google Scholar 

  231. Pye IF, Stonier C, McGale EHF: Double enzymatic assay for determination of glutamine and glutamic acid in cerebrospinal fluid and plasma. Anal Chem 50: 951–953, 1978.

    CAS  PubMed  Google Scholar 

  232. Iigima K, Tabase S, Tsumuraya K, Endo M, Itahara K: Changes in free amino acids of cerebrospinal fluid and plasma in various neurological diseases. Tohoku J Exp Med 126: 133–150, 1978.

    Google Scholar 

  233. Heiblim DI, Evans HE, Glass L, Agbayani MM: Amino acid concentrations in cerebrospinal fluid. Arch Neurol 35: 765–768, 1978.

    CAS  PubMed  Google Scholar 

  234. Servo C, Palo J, Pitkanen E: Gas chromatographic separation and mass spectrometric identification of polyols in human cerebrospinal fluid and plasma. Acta Neurol Scand 56: 104–110, 1977.

    CAS  PubMed  Google Scholar 

  235. Servo C, Palo J, Pitkanen E: Polyols in the cerebrospinal fluid and plasma of neurological, diabetic, and uraemic patients. Acta Neurol Scand 56: 111–116, 1977.

    CAS  PubMed  Google Scholar 

  236. Smith SL, Novotny M, Weber EL: Gas-chromatographic determination of polyol profiles in cerebrospinal fluid. Clin Chem 24: 545–548, 1978.

    CAS  PubMed  Google Scholar 

  237. Gold P, Freedman S: Specific carcinoembryonic antigens of the human digestive system. J Exp Med 122: 467–481, 1965.

    CAS  PubMed  Google Scholar 

  238. Egan ML, Engvall E, Ruoslahti EI, Todd CW: Detection of circulating tumor antigens. Cancer 40: 458–466, 1977.

    CAS  PubMed  Google Scholar 

  239. Reynoso G, Chu TM, Holyoke D, Cohen E, Nemoto T, Wang JJ, Chuang J, Guinan P, Murphy GP: Carcinoembryonic antigen in patients with different cancers. JAMA 220: 361–365, 1972.

    CAS  PubMed  Google Scholar 

  240. Kido DK, Dyce BJ, Haverback BJ, Rumbaugh CL: Carcinoembryonic antigen in patients with untreated central nervous system tumors. Bull Los Angeles Neurol Soc 41: 47–54, 1976.

    CAS  PubMed  Google Scholar 

  241. Snitzer LS, McKinney EC, Tejada F, Sigel MM, Rosomoff HL, Zubrod CG: Cerebral metastases and carcinoembryonic antigen in CSF. N Engl J Med 293: 1101, 1975.

    CAS  PubMed  Google Scholar 

  242. Feinberg SB, Hahn JF: Carcinoembryonic antigen in a metastatic brain tumor. Neurosurgery 2: 266–268, 1978.

    CAS  PubMed  Google Scholar 

  243. Miyake E, Yamashita M, Kitamura K, Ishigami F: Carcinoembryonic antigen levels in patients with brain tumors. Acta Neurochir 46: 53–57, 1979.

    CAS  Google Scholar 

  244. Yap BS, Yap HY, Benjamin RS, Bodey GP, Freireich EJ: Cerebrospinal fluid carcinoembryonic antigen in breast cancer patients with meningeal carcinomatosis. Proc Am Assoc Cancer Res 19: 98, 1978.

    Google Scholar 

  245. Hass WK: Soluble tissue antigens in human brain tumors and cerebrospinal fluid. Arch Neurol 14: 443–447, 1966.

    CAS  PubMed  Google Scholar 

  246. Kornblith PL, Dohan FC Jr, Wood WC, Whitman BO: Human astrocytoma: Serum mediated immunologic response. Cancer 33: 1512–1519, 1974.

    CAS  PubMed  Google Scholar 

  247. Phillips JP, Sujatanond M, Martuza RL, Quindlen EA, Wood WC, Kornblith PL, Dohan FC Jr: Cytotoxic antibodies in preoperative glioma patients: a diagnostic assay. Acta Neurochir 35: 43–52, 1976.

    CAS  Google Scholar 

  248. Wood WC, Kornblith PL, Quindlen EA, Pollock LA: Detection of humoral immune response to human brain tumors: specificity and reliability of microcytotoxicity assay. Cancer 43: 86–90, 1979.

    CAS  PubMed  Google Scholar 

  249. Kornblith PL, Pollock LA, Coakham HB, Quindlen EA, Wood WC: Cytotoxic antibody responses in astrocytoma patients. J Neurosurg 51: 47–52, 1979.

    CAS  PubMed  Google Scholar 

  250. Sheikh KMA, Apuzzo MLJ, Weiss MH: Specific cellular immune responses in patients with malignant gliomas. Cancer Res 39: 1733–1738, 1979.

    CAS  PubMed  Google Scholar 

  251. Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B: An acidic protein isolated from fibrous astrocytes. Brain Res 28: 351–354, 1971.

    CAS  PubMed  Google Scholar 

  252. Delpech B, Delpech A, Vidard MN, Girard N, Tayot J, Clement JC, Creissard P: Glial fibrillary acid protein in tumors of the nervous system. Br J Cancer 37: 33–40, 1978.

    CAS  PubMed  Google Scholar 

  253. Jacque CM, Vinner C, Kujas M, Racadot J, Baumann NA: Determination of glial fibrillary acid protein in human brain tumors. J Neurol Sci 35: 147–155, 1978.

    CAS  PubMed  Google Scholar 

  254. Maunoury R, Delpech A, Delpech B, Bidard MN, Vedrenne C, Constans JP, Hillereau J: Localization de 1a protein gliofibrillaire (GFAP) pare immunocytochimie dans les tumeurs cerebrales humaines. Neuro-Chirurgie 23: 173–185, 1977.

    CAS  PubMed  Google Scholar 

  255. Eng LF, Lee YL, Miles LEM: Measurement of glial fibrillary acid protein by a two-site immunoradiometric assay. Anal Biochem 71: 243–259, 1976.

    CAS  PubMed  Google Scholar 

  256. Deck JHN, Eng LF, Bigbee J, Woodcock SM: The role of glial fibrillary acidic protein in the diagnosis of central nervous system tumors. Acta Neuropathol (Berlin) 42: 183–190, 1978.

    CAS  Google Scholar 

  257. Eng LF, Rubinstein LJ: Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors. J Histochem Cytochem 26: 513–522, 1978.

    CAS  PubMed  Google Scholar 

  258. Palfreyman JW, Thomas DGT, Ratcliffe JG, Graham DI: Glial fibrillary acid protein: purification from human fibrillary astrocytoma, development and validation of a radioimmunoassay for GFAP-like immunoactivity. J Neurol Sci 41: 101–113, 1979.

    CAS  PubMed  Google Scholar 

  259. Jacque CM, Kujas M, Poreau A, Raoul M, Collier P, Racadot J, Baumann N: GFA and S100 protein levels as an index for malignancy in human gliomas and neurinomas. J Natl Cancer Inst 62: 479–483, 1979.

    CAS  PubMed  Google Scholar 

  260. Lowenthal A, Noppe M, Gheuens J, Karcher D: α-Albumin (glial fibrillary acid protein) in normal and pathological human brain and cerebrospinal fluid. J Neurol 219: 87–91, 1978.

    CAS  PubMed  Google Scholar 

  261. Bogoch S: Brain glycoprotein 10B: further evidence of the ‘sign-post’ role of brain glycoproteins in cell recognition, its change in brain tumor, and the presence of a ‘distance factor.’ Adv Exp Med Biol 32: 39–52, 1972.

    CAS  Google Scholar 

  262. Bogoch S: Brain glycoproteins and recognition functions: recognins and cancer. Adv Exp Med Biol 68: 555–566, 1976.

    CAS  PubMed  Google Scholar 

  263. Bogoch S: The detection of malignant gliomas in brain by the quantitative production in vitro of TAG (target attaching globulins) from human serum. In: Biological diagnosis of brain disorders, Bogoch S (ed.). New York: Spectrum-Wiley 1973, pp 358–361.

    Google Scholar 

  264. Bogoch S: Astrocytin and malignin: two polypeptide fragments (recognins) related to brain tumor. Natl Cancer Inst Monogr 46: 133–137, 1977.

    CAS  PubMed  Google Scholar 

  265. Harris JH, Gohara A, Bogoch S: New immunodiagnostic techniques for CNS tumors. J Neuropath Exp Neurol 37: 623, 1978.

    Google Scholar 

  266. Bogoch S, Bogoch ES, Fager CA, Goldensohn ES, Harris JH, Hickok DF, Lowden JA, Lux WE, Ransohoff J, Walker MD: Elevated serum anti-malignin antibody in glioma and other cancer patients: a seven-hospital blind study. Neurology (Minneap) 29: 584–585, 1979.

    Google Scholar 

  267. Bogoch S, Bogoch ES: Production of two recognins related to malignin: recognin M from mammary MCF-7 carcinoma cells and recognin L from lymphoma P3G cells. Neurochem Res 4: 465–472, 1979.

    CAS  PubMed  Google Scholar 

  268. Bogoch S, Bogoch ES: Disarmed anti-malignin antibody in human cancer. Lancet I: 987, 1979.

    Google Scholar 

  269. Mori T, Morimoto K, Ushio Y, Hayakawa T, Mogami H: Radioimmunoassay of astroprotein (an astrocyte-specific cerebroprotein) in cerebrospinal fluid from patients with glioma: a preliminary study. Neurol Med Chir 15: 23–25, 1975.

    Google Scholar 

  270. Mori T, Morimoto K, Hayakawa T, Ushio Y, Mogami H, Sebiguchi K: Radioimmunoassay of astroprotein (an astrocyte-specific cerebroprotein) in cerebrospinal fluid and its clinical significance. Neurol Med Chir 18: 25–31, 1978.

    CAS  Google Scholar 

  271. Morimoto K, Hayakawa T, Ushio Y, Mogami H, Mori T: Radioimmunoassay of astroprotin (an astrocyte-specific cerebroprotein) in cerebrospinal fluid and its clinical significance. Adv Neurol Sci 22: 75–81, 1978.

    Google Scholar 

  272. Cohen SR, Herndon RM, McKhann GM: Radioimmunoassay of myelin basic protein in spinal fluid: an index of active demyelination. N Engl J Med 295: 1455–1457, 1976.

    CAS  PubMed  Google Scholar 

  273. McPherson TA, Gilpin A, Seland TP: Radioimmunoassay of CSF for encephalitogenic basic protein: a diagnostic test for MS. Can Med Assoc J 107: 856–859, 1972.

    CAS  PubMed  Google Scholar 

  274. Schmid G, Thomas G, Hempel K, Gruninger W: Radioimmunological determination of myelin basic protein (MBP) and MBP-antibodies. Eur Neurol 12: 173–185, 1974.

    CAS  PubMed  Google Scholar 

  275. Galvez S, Farcas A, Monari M: The concentration of alpha-1-antitrypsin in cerebrospinal fluid and serum in a series of 40 intracranial tumors. Clin Chim Acta 91: 191–196, 1979.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Martinus Nijhoff Publishers

About this chapter

Cite this chapter

Seidenfeld, J., Marton, L.J. (1981). Biological Markers of the Tumors of the Central Nervous System. In: Humphrey, G.B., Dehner, L.P., Grindey, G.B., Acton, R.T. (eds) Pediatric Oncology 1. Cancer Treatment and Research, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8219-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8219-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8221-5

  • Online ISBN: 978-94-009-8219-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics