Skip to main content

Benthic phosphorus regeneration in the Potomac River Estuary

  • Conference paper
Book cover Sediment/Freshwater Interaction

Part of the book series: Developments in Hydrobiology ((DIHY,volume 9))

Abstract

The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment. In situ benthic fluxes (0.1 to 2.0 mmoles m-2 day-1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m-2 day-1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation.

Both in situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River.

When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aspila, K. I., Agemian, H. & Chau, A. S. Y., 1976. A semi-automated method for the determination of inorganic, organic, and total phosphate in sediments. Analyst 101: 187–197.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J. P., 1979. Calibration of sediment transport box models. In: Potomac Estuary study, 1979 Fiscal Year Annual Report, U.S. Geological Survey, Reston. Virginia, pp. 60–71.

    Google Scholar 

  • Bennett, J. P., 1981. High-flow contributions to summer water-quality problems in the tidal Potomac River. Proc. 1980 Annual Meeting Interstate Commission on the Potomac River Basin. ICPRB General Publication 81–1.

    Google Scholar 

  • Berner, R. A., 1976. Inclusion of adsorption in the modeling of early diagenesis. Earth Planet. Sci. Lett. 29: 333–340.

    Article  Google Scholar 

  • Berner, R. A., 1980. Early Diagenesis. Princeton Press, Princeton, N. J. 241 pp.

    Google Scholar 

  • Bezrukov, P. L., 1960. Sedimentation in the northwestern Pacific Ocean. International Geological Congress, Report of Soviet Geologists: 45–58.

    Google Scholar 

  • Billen, G., 1978. A budget of nitrogen recycling in North Sea sediments off the Belgian Coast. Estuarine and Coastal Marine Science 7: 127–146.

    Article  CAS  Google Scholar 

  • Boynton, W. R., Kemp, W. M. & Osborne, C. G., 1980a. Nutrient fluxes across the sediment-water interface in the turbid zone of a coastal plain estuary. In: Kennedy V. S. (ed.) Estuarine Perspectives, pp. 93–109. Academic Press, New York.

    Google Scholar 

  • Bray, J. T., Bricker, O. P. & Troup, B. N., 1973. Phosphate in interstitial waters of anoxic sediments: oxidation effects during sampling procedure. Science 180: 1362–1364.

    Article  PubMed  CAS  Google Scholar 

  • Callender, E. & Hammond, D. E., 1982. Nutrient exchange across the sediment-water interface in the Potomac River Estuary. Estuarine, Coastal and Shelf Science (accepted for publication).

    Google Scholar 

  • Carignan, R. & Flett, R. J., 1981. Postdepositional mobility of phosphorus in lake sediments. Limnol. Oceanogr. 26: 361–366.

    Article  CAS  Google Scholar 

  • Carpenter, J. H., 1965. The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol. Oceanogr. 10: 141–143.

    Article  CAS  Google Scholar 

  • Cole, B. E. & Harmon, D. D., 1980. Potomac River phytoplankton productivity, nutrient regeneration, and respiration, August 1977–August 1978. U. S. Geological Survey Open-File Report 80-000. 59 pp.

    Google Scholar 

  • Davis, R. B., 1974. Stratigraphic effects of tubificids in profundal lake sediments. Limnol. Oceanogr. 19: 466–488.

    Article  Google Scholar 

  • Fillos, J. & Swanson, W. R., 1975. The release rate of nutrients from river and lake sediments. J. Wat. Pollut. Control Fedn 47: 1032–1042.

    CAS  Google Scholar 

  • Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D. G., Hartman, B. & Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. cosmochim. Acta 43: 1075–1090.

    Article  CAS  Google Scholar 

  • Garside, C., Hull, G. & Murray, S., 1978. Determination of submicromolar concentrations of ammonia in natural waters. Limnol. Oceanogr. 23: 1073–1076.

    Article  CAS  Google Scholar 

  • Goldhaber, M. G., Aller, R. C., Cochran, J. K., Rosenfeld, K., Martens, C. S. & Berner, R. A., 1977. Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: report of the FOAM group. Am. J. Sci. 277: 193–237.

    Article  CAS  Google Scholar 

  • Hammond, D. E. & Fuller, C., 1979. The use of radon-222 to estimate benthic exchange and atmospheric exchange rates in San Francisco Bay. In: Conomos, T. J. (Ed.) San Francisco Bay, The Urbanized Estuary, pp. 213–230. American Association for the Advancement of Science, San Francisco.

    Google Scholar 

  • Hammond, D. E. & Fuller, C., 1981. Exchange rates of radon-222 across the sediment-water interface and across the air-water interface in the Potomac River Estuary, (submitted to J. geophys. Res).

    Google Scholar 

  • Hearn, P. & Yotsukura, N., 1980. The fate of effluent derived phosphorus in the tidal Potomac River. In: Potomac Estuary Study, 1980 Fiscal year Annual Report, U.S. Geological Survey, Reston, Virginia, pp. 142–151.

    Google Scholar 

  • Hetling, L. J. & O’Connel, R. L., 1966. A study of tidal dispersion in the Potomac River. Wat. Resourc. Res. 2: 825–841.

    Article  Google Scholar 

  • Hingston, F. J., Atkinson, R. J., Posner, A. M. & Quirk, J. P., 1969. Specific adsorption of anions by geothite. Int. Congr. Soil Sci. Trans. (9th) 1: 669–678.

    Google Scholar 

  • Holdren, G. C. Jr. & Armstrong, D. E., 1980. Factors affecting phosphorus release from intact lake sediment cores. Envir. Sci. Technol. 14: 79–87.

    Article  Google Scholar 

  • Kamp-Nielsen, L., 1974. Mud-water exchange of phosphate and other ions in undisturbed sediment cores and factors affecting the exchange rates. Arch. Hydrobiol. 73: 218–237.

    Google Scholar 

  • Klump, J. V. & Martens, C. S., 1981. Biogeochemical cycling in an Organic rich coastal marine basin — II. Nutrient sediment water exchange processes. Geochim. cosmochim. Acta 45: 101–124.

    Article  CAS  Google Scholar 

  • Krom, M. D. & Berner, R. A., 1980a. The diffusion coefficients of sulfate, ammonium, and phosphate ions in anoxic marine sediments. Limnol. Oceanogr. 25: 327–337.

    Article  CAS  Google Scholar 

  • Krom, M. D. & Berner, R. A., 1980b. Adsorption of phosphate in anoxic marine sediments. Limnol. Oceanogr. 25: 797–806.

    Article  CAS  Google Scholar 

  • Li, V. H. & Gregory, S., 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochim. cosmochim. Acta 38: 703–714.

    Article  CAS  Google Scholar 

  • Martens, C. S. & Klump, J. V., 1980. Biogeochemical cycling in Cape Lookout bight — I. Methane sediment-water exchange processes. Geochim. cosmochim. Acta 44: 471–490.

    Article  CAS  Google Scholar 

  • Matisoff, G., 1978. Early diagenesis of Chesapeake Bay sediment: a time series study of temperature, chloride, and silica. Ph. D. Thesis, Johns Hopkins University, Baltimore. 167 pp.

    Google Scholar 

  • Mullin, J. B. & Riley, J. P., 1955. Colorimetricdetermination of silicate with special reference to sea and natural waters. Analyt. chim. Acta 12: 162–176.

    Article  CAS  Google Scholar 

  • Murphy, J. & Riley, J. P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analyt. chim. Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Nixon, S. W., 1981. Remineralization and nutrient cycling in coastal marine ecosystems. In: Neilson, B. & Cronin, L. E. (Eds.) Nutrient Enrichment in Estuaries, pp. 111–138. Humana Press, Clifton, N.J.

    Google Scholar 

  • Nixon, S. W., Kelley, J. R., Furnas, B. N., Oviatt, C. A. & Hale, S. S., 1980. Phosphorus regeneration and the metabolism of coastal marine bottom communities. In: Tenore, K. B. & Coull, B. C. (Eds.) Benthic Dynamics. Belle W. Baruch Library in Marine Science No. 11, p. 219–242.

    Google Scholar 

  • Officer, C. B., 1980. Box models revisited. In: Hamilton, P. & Macdonald, K. B. (eds.) Estuarine and Wetland Processes, pp. 65–114. Plenum Press, New York.

    Google Scholar 

  • Plummer, L. N., Jones, D. F. & Truesdell, A. H., 1976. WA- TEQF - a FORTRAN IV version of WATEQ, a computer program for calculating chemical equilibrium of natural wates. U.S. Geological Survey Water Resources Investigations 76–13. 61 pp.

    Google Scholar 

  • Reebufgh, W. S., 1967. An improved interstitial water sampler. Limnol. Oceanogr. 12: 163–165.

    Article  Google Scholar 

  • Robbins, J. A., McCall, P. L., Fisher, B. J. & Krezoski, J. R., 1979. Effect of deposit feeders on migration of 137Cs in lake sediments. Earth Planet. Sci. Lett. 42: 277–287.

    Article  CAS  Google Scholar 

  • Scott, D. M., Mazurkiewicz, M. & Leeman, P., 1976. The long-term monitoring of ventilation rhythms of the polychaetous annelid ‘Nereis virens’ Sars. Comp. Biochem. Physiol. 53A; 65–68.

    Article  CAS  Google Scholar 

  • Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801.

    Article  CAS  Google Scholar 

  • Taft, J. L., Taylor, W. R., Hartwig, E. O. & Loftus, R., 1980. Seasonal oxygen depletion in Chesapeake Bay. Estuaries 3: 242–247.

    Article  Google Scholar 

  • Theis, T. L. & McCabe, P. J., 1978. Phosphorus dynamics in hypereutrophic lake sediments. Wat. Res. 12: 677–685.

    Article  CAS  Google Scholar 

  • Williams, J. D. H., Murphy, T. P. & Mayer, T., 1976. Rates of accumulation and phosphorus forms in Lake Erie sediments. J. Fish. Res. Bd Can. 33: 430–439.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter G. Sly

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr W. Junk Publishers, The Hague

About this paper

Cite this paper

Callender, E. (1982). Benthic phosphorus regeneration in the Potomac River Estuary. In: Sly, P.G. (eds) Sediment/Freshwater Interaction. Developments in Hydrobiology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8009-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8009-9_42

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8011-2

  • Online ISBN: 978-94-009-8009-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics