Skip to main content

Low Cycle Fatigue and Life Prediction Methods

  • Conference paper

Abstract

This paper reviews the various methods available for correlating and predicting life to failure in low cycle fatigue at high temperature. The extent to which individual techniques were applicable to the data obtained in the COST 50 Programme is considered and the limitations are discussed. The relevance of metallographic examination in providing details of the fracture characteristics and mechanisms involved is indicated. The use of LCF fracture maps has been proposed as an aid in the selection of appropriate predictive techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bressers J, Roth M, Fenske E and Tambuyser P, Project CCR 2, COST 50 Round II. Final Report.

    Google Scholar 

  2. Franklin C J and Martens H J, Project CH4, COST 50 Round II. Final report, Feb 1981.

    Google Scholar 

  3. Witt A, König R and Eckard C, Project D8, COST 50 Round II. Final Report.

    Google Scholar 

  4. Borchert B, König G and Schmid H, Project D14, COST 50 Round II. Final Report, May 1981.

    Google Scholar 

  5. Massarelli L, Ranucci D and Picco E, Project I 1, COST 50 Round II. Final report, Oct 1980.

    Google Scholar 

  6. Samuelsson A, Larsson L E and Lundberg L. Project S2, COST 50 Round II. Final report, Oct 1981.

    Google Scholar 

  7. Raynor D, Project UK 10, COST 50 Round II Final Report.

    Google Scholar 

  8. Day M F and Thomas G B, Project UK 16, COST 50 Round II Final report.

    Google Scholar 

  9. Coffin L F Jr, 1954 Trans ASME 76, p 923.

    CAS  Google Scholar 

  10. Manson S S, 1953, “Behaviour of materials under conditions of thermal stress”. NASA-TN-2933.

    Google Scholar 

  11. Coffin L F Jr, 1974, James Clayton Lecture. Proc Inst. Mech. Engrs. 188 9 /74. pp 109–127.

    Article  Google Scholar 

  12. Solomon H D, 1972 J Mater 7, PP 299–306.

    Google Scholar 

  13. Tomkins B, 1975, Trans ASME J Eng Mater Tech 97, pp 289–297.

    Article  Google Scholar 

  14. Tomkins B, 1981, Creep and Fatigue in High Temperature alloys, ed J Bressers, Applied Science Publishers, pp 111–143.

    Google Scholar 

  15. Basquin O H, 1910, Proc ASTM 10, pp 625–630.

    Google Scholar 

  16. Coffin L F Jr, 1970, “The effect of frequency on high temperature low cycle fatigue”, Proc Air Force Conf Fracture and Fatigue of Aircraft Structures. AFDL-TR-70-144, pp 301–312.

    Google Scholar 

  17. Coffin L F Jr, Carden A E, Manson S S, Severud L K and Greenstreet W L, 1977, “Time dependent fatigue of structural alloys. A general assessment.” Report 0RNL-5073.

    Google Scholar 

  18. Ostergren W J, 1976, J Testing and Evaluation, 4, (5), pp 327–339.

    Article  CAS  Google Scholar 

  19. Day M F and Thomas G B, 1978. “Creep-fatigue interaction in alloy IN738LC”, AGARD Conference, Aalborg, Denmark. CP-243.

    Google Scholar 

  20. Day M F and Thomas G B, 1979. Met. Sci. 13, PP 25–33.

    Google Scholar 

  21. Lemaitre J and Chaboche J L, 1975, “A non-linear model of creep-fatigue damage cumulation and interaction”. IUTAM Symposium Mechanics of Viscoelastic Media and Bodies, J Hult (ed). Springer Verlag.

    Google Scholar 

  22. Chaboche J L, Policella H and Savalle S, 1978, High Temperature Alloys for Gas Turbines, Ed. D Coutsouradis et al. Applied Science Publishers, p 627.

    Google Scholar 

  23. Cailletaud G and Chaboche J L, 1979, “Macroscopic description of the microstructural changes induced by varying temperature: example of IN 100 cyclic behavior”. Third Int Conf Mechanical Behaviour of Materials (ICM-3), Cambridge Ed. Miller K J and Smith R F, Pergamon Press, p 23

    Google Scholar 

  24. Manson S S, “Fatigue: A Complex Subject—Some simple approximations”, Experimental Mechanics 1965 EXMC-A, 5, (7), p 193.

    Google Scholar 

  25. Manson S S and Halford G, 1967, “A method of estimating high temperature low cycle fatigue behaviour of materials”, Thermal and High Strain Fatigue. Metals and Metallurgy Trust, Monograph No 32, p 154.

    Google Scholar 

  26. Spera D A, 1969, “The calculation of elevated-temperature cyclic life considering low cycle fatigue and creep”. NASA report TND-5317.

    Google Scholar 

  27. Spera D A, Howes M A H and Bijon P T, 1971, “Thermal-fatigue resistance of 15 high-temperature alloys determined by the fluidized bed technique”. NASA report TMX-52975.

    Google Scholar 

  28. Spera D A, 1969, “Calculation of thermal fatigue life based on accumulated creep damage”. NASA report TND-5489.

    Google Scholar 

  29. Spera D A, 1972, “Comparison of experimental and theoretical thermal fatigue lives for five nickel-base alloys”, NASA report TMX-68051.

    Google Scholar 

  30. Franklin C J, 1978, High Temperature Alloys for Gas-Turbines, ed. D Coutsouradis et al, Applied Science Publishers, p 513.

    Google Scholar 

  31. Polhemus J F, Spaeth C E and Vogel W H, 1973, Fatigue at Elevated Temperatures ASTM STP 520, pp 625–636.

    Article  CAS  Google Scholar 

  32. Manson S S, 1973, Fatigue at Elevated Temperature, ASTM STP 520. pp 744–782.

    CAS  Google Scholar 

  33. Hirschberg M H and Halford G R, 1975, “Strain Range Partitioning—A Tool for Characterising High Temperature Low Cycle Fatigue”, NASA technical paper TMX 71691, 40th meeting AGARD Structures and Materials Panel, Brussels, Belgium.

    Google Scholar 

  34. Hyzack, Capt J M and Bernstein H L, 1978, “An analysis of the Low Cycle Fatigue Behaviour of the Superalloy Rene 95 by Strain Range Patitioning”, AGARD Conference Aalborg, Denmark CP-243.

    Google Scholar 

  35. Antunes VTA and Hancock P, 1978, “Strain Range Partitioning of Mar M002 over the temperature range 750–1040°C”, AGARD Conf Aalborg, Denmark CP-243.

    Google Scholar 

  36. Halford G R, Personal Communication.

    Google Scholar 

  37. Hoffelner W and Wüthrich C, 1981, Brown Boveri Research Centre Report KLR 81-32C.

    Google Scholar 

  38. Halford G R, Saltsman J F and Hirschberg M H, 1977. “Ductility Normalised SRP life relations for Creep-Fatigue Life Prediction”, Proc Conf Environmental Degradation of Engineering Materials, Blackburg, Virginia, USA, pp 599–612.

    Google Scholar 

  39. Danzer R, 1982, Proc Int School of Physics “Enrico Fermi” Course, in print (also in ref 40).

    Google Scholar 

  40. Buchmayer B and Danzer R, COST 50 Round III, Report no 1, Project A3, August 1981.

    Google Scholar 

  41. Danzer R, Buchmayer B and Thomas G B, 1982, “The Influence of Creep on the High Temperature Cyclic Life of IN738LC”, This Conference.

    Google Scholar 

  42. Jaske C E, Mindlin H and Perrin J S, 1973, Fatigue at Elevated Temperatures, ASTM STP 520, pp 365–376.

    CAS  Google Scholar 

  43. Day M F and Thomas G B, to be published.

    Google Scholar 

  44. Ellison E G, 1978, “Strain Range Partitioning in cyclic creep of a 1 Cr Mo V steel”, AGARD Conf Aalborg, Denmark, CP-243.

    Google Scholar 

  45. Manson S S, 1978, “The Development and Application of Strain Range Partitioning as a Tool in the Treatment of High Temperature Metal Fatigue”, AGARD Conf Aalborg, Denmark CP-243.

    Google Scholar 

  46. Antolovitch S D, Baur R, Li S, 1980, “Superalloys 1980” ed J K Tien, ASM pp 605–613.

    Google Scholar 

  47. Ashby M F, 1972, Acta Met 20 (7), pp 887–897.

    Article  CAS  Google Scholar 

  48. Priest R H and Ellison E G, 1981, Materials Science and Engineering 49 (1), pp 7–17.

    Article  CAS  Google Scholar 

  49. Woodford D A and Coffin L F Jr, 1974, “The Role of Grain Boundaries in High Temperature Fatigue”, Proc 4th Bolton Landing Conf ed Walther J L, Westbrook J H, Woodford D A, pub Claitorfs p 421.

    Google Scholar 

  50. Taplin D M R and Collins A L W, 1978, Ann Revs Material Science, 8, pp 235–268.

    Article  CAS  Google Scholar 

  51. Ke Wei and Dyson B F, submitted to Acta Met.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 ECSC, EEC, EAEC, Brussels and Luxembourg

About this paper

Cite this paper

Thomas, G.B., Bressers, J., Raynor, D. (1982). Low Cycle Fatigue and Life Prediction Methods. In: Brunetaud, R., Coutsouradis, D., Gibbons, T.B., Lindblom, Y., Meadowcroft, D.B., Stickler, R. (eds) High Temperature Alloys for Gas Turbines 1982. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7907-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7907-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7909-3

  • Online ISBN: 978-94-009-7907-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics