Skip to main content

An Introduction to Cohen-Macaulay Partially Ordered Sets

  • Conference paper
Ordered Sets

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 83))

Abstract

Combinatorics, algebra and topology come together in a most remarkable way in the theory of Cohen-Macaulay posets. These lectures will provide an introduction to the subject based on the work of Baclawski, Hochster, Reisner and the present authors (see references).

Combinatorial properties of some important posets will be surveyed. This leads in a natural way to the concept of a Cohen- Macaulay poset. This concept can be formulated in terms of a certain ring associated with the. poset. On the other hand, Cohen-Macaulay posets can be defined in terms of topological properties. A fundamental theorem of Reisner gives the connection between these two definitions. Examples of Cohen-Macaulay posets include semmodular lattices (in particular, distributive and geometric lattices), supersolvable lattices, face-lattices of polytopes, and Bruhat order. This theory has given birth to the concept of lexicographically shellable posets. Their ubiquity and usefulness give them a central position in the subject.

The theory of Cohen-Macaulay posets has many applications both to combinatorics and to other branches of mathematics, including algebra and topology. It can be used, for instance, to obtain Information about such numerical invariants of posets as number of chains and Möbius function. Cohen-Macaulay posets can be used to study rings of interest to algebraic geometry and establish the topological type of certain simplicial complexes. Contributions to representation theory can be made by considering groups acting on Cohen-Macaulay posets. Examples of these and other applications will be discussed, together with open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Baclawski (1975) Whitney numbers of geometric lattices, Advances In Math 16, 125–138.

    Article  MathSciNet  MATH  Google Scholar 

  2. K.Baclawski (1976) Homology and combinatorics of ordered sets, Ph.D. Thesis, Harvard University.

    Google Scholar 

  3. K. Baclawski (1977) Galois connections and the Leray spectral sequence, Advances in Math. 25, 191–215.

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Baclawski (1980) Cohen-Macaulay ordered sets, J. Algebra 63, 226–258.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Baclawski (1981) Rings with lexicographic straightening law, Advances In Math. 39, 185–213.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Baclawski (to appear) Cohen-Macaulay connectivity and geometric lattices, European J. Combinatorics.

    Google Scholar 

  7. K. Baclawski (to appear) Canonical modules of partially ordered sets.

    Google Scholar 

  8. K. Baclawski and A. M. Garsia (1981) Combinatorial decompositions of a class of rings, Advances in Math. 39, 155–184.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Birkhoff (1967) Lattice Theory (3rd. ed.), Amer. Math. Soc. Colloq. Publ. No. 25, Amer. Math. Soc., Providence,RI.

    Google Scholar 

  10. A. Björner (1980) Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260, 159–183.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Björner (1981) Homotopy type of posets and lattice complementation, J. Combinatorial Theory A 30, 90–100.

    Article  MATH  Google Scholar 

  12. A. Björner (to appear) On the homology of geometric lattices, Algebra Universalis.

    Google Scholar 

  13. A. Björner (to appear) Shellability of buildings and homology representations of finite groups with BN-pair.

    Google Scholar 

  14. A, Björner, A. M. Garsia and R. P. Stanley (to appear) Cohen-Macaulay partially ordered sets.

    Google Scholar 

  15. A. Björner and R. P. Stanley (to appear) The number of faces of a Cohen-Macaulay complex.

    Google Scholar 

  16. A. Björner and M. Wachs (to appear) Bruhat order of Coxeter groups and shellability, Advances in Math.

    Google Scholar 

  17. A. Björner and M. Wachs (to appear) On lexicographically shellable posets.

    Google Scholar 

  18. A. Björner and J. W. Walker (to appear) A homotopy complementation formula for partially ordered sets, European J. Combinatorics.

    Google Scholar 

  19. N. Bourbaki (1968) Groupes et algèbres de Lie, Éléments de Mathématique, Fasc. XX XIV, Hermann, Paris.

    Google Scholar 

  20. C. DeConcini, D. Eisenbud and C. Procesi (1980) Young diagrams and determinantal varieties, Invent. Math. 56, 129–165.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. DeConcini, D. Eisenbud and C. Procesi (to appear) Hodge algebras.

    Google Scholar 

  22. DL] C. DeConcini and V. Lakshmibai (to appear)Arithmetic Cohen-Macaulayness and arithmetic normality for Schubert varieties, Amer. J. Math.

    Google Scholar 

  23. C. DeConcini and C. Procesi (to appear) Hodge algebras: a survey, in Proceedings of the Conference on Schur Functors 1980, Torun, Poland.

    Google Scholar 

  24. V. V. Deodhar (1977) Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function,, Inv. Math. 39, 187–198.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Désarménien, J. P. S. Kung and G.-C. Rota (1978) Invariant theory, Young bitableaux, and combinatorics Advances in Math. 27, 63–92.

    MATH  Google Scholar 

  26. P. Doubilet, G.-C. Rota and J. Stein (1974) On the foundations of combinatorial theory IX: Combinatorial methods in invariant theory, Studies in Appl. Math. 8, 185–216.

    MathSciNet  Google Scholar 

  27. P.H. Edelman (1980) The zeta polynomial of a partially ordered set, Ph.D. thesis, Massachusetts Institute of Technology.

    Google Scholar 

  28. P.H. Edelman (1981) The Bruhat order of the symmetric group is lexicographically shellable, Proc. Amer. Math. Soc. 82, 355–358.

    Article  MathSciNet  Google Scholar 

  29. D. Eisenbud (1980) Introduction to algebras with straightening laws, in Ring theory and algebra III (Proc. Third Oklahoma Conference) ( B. R. McDonald, ed.), Dekker, New York, 243–268.

    Google Scholar 

  30. F. D. Farmer (1979) Cellular homology for posets, Math Japonica 23, 607–613.

    MathSciNet  MATH  Google Scholar 

  31. J. Folkman (1966) The homology groups of a lattice, J. Math. Mech. 15, 631–636.

    MathSciNet  MATH  Google Scholar 

  32. A.M. Garsia (1979) Méthodes combinatoires dans la théorie des anneaux de Cohen-Macaulay, C. R. Acad. Sci. Paris. Sér. A 288, 371–374.

    MathSciNet  MATH  Google Scholar 

  33. A. M. Garsia (1980) Combinatorial methods in the theory of Cohen-Macaulay rings, Advances in Math. 38, 229–266.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. M. Garsia and D. Stanton (to appear) Group actions on Stanley-Reisner rings and invariant theory, Advances in Math.

    Google Scholar 

  35. P. Hall (1936) The Eulerian functions of a group, Quart. J. Math. 7, 134–151.

    Article  Google Scholar 

  36. M. Hochster (1972) Rings of invariants of tori, Cohen- Macaulay rings generated by monomials, and polytopes, Annals Math. 96, 318–337.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Hochster (1977) Cohen-Macaulay rings, combinatorics, and simplieial complexes, in Ring Theory 11 (Proc. Second Oklahoma Conference) ( B. R. McDonald and R. Morris, ed.), Dekker, New York, 171–223.

    Google Scholar 

  38. W. V. D. Hodge (1943) Some enumerative results in the theory of forms, Proc. Camb. Phil. Soc. 39, 22–30.

    Article  MathSciNet  MATH  Google Scholar 

  39. W. V.D.Hodge and D. Pedoe (1952) Methods of Algebraic Geometry, Vol. II, Cambridge Univ. Press (reprinted 1968 ), London.

    Google Scholar 

  40. B. Kind and P. Kleinschmidt (1979) Schälbare Cohen-Macaulay-Komplexe und ihre Parametrisierung, Math. Z. 167, 173–179.

    Article  MathSciNet  MATH  Google Scholar 

  41. D. E. Knuth (1970) A note on solid partitions, Math. Comp. 24, 955–967.

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Lakser (1971) The homology of a lattice, Discrete Math. 1, 187–192.

    Article  MathSciNet  MATH  Google Scholar 

  43. V. Lakshmibai, C. Musili and C. S. Seshadri (1979) Geometry of G/P, Bull. Amer. Math. Soc. 1, 432–435.

    Article  MathSciNet  MATH  Google Scholar 

  44. F. S. Macaulay (1916) The Algebraic Theory of Modular Systems, Cambridge Tracts in Mathematics and Mathematical Physics, No. 19, Cambridge Univ. Press, London.

    Google Scholar 

  45. P. A. MacMahon ( 1915, 1916) Combinatory Analysis, Vols. 1–2, Cambridge Univ. Press, London (reprinted by Chelsea, New York, 1960 ).

    Google Scholar 

  46. J. Mather (1966) Invariance of the homology of a lattice, Proc. Amer. Math. Soc. 17, 1120–1124.

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Munkres (1976) Topological results in combinatorics, Preprint, MIT, Cambridge, Mass.

    Google Scholar 

  48. R. A. Proctor (to appear) Classical Bruhat orders and lexicographic shellability.

    Google Scholar 

  49. D. Quillen (1978) Homotopy properties of the poset of non-trivial p-subgroups of a group, Advances In Math. 28, 101–128.

    Article  MathSciNet  MATH  Google Scholar 

  50. G. Reisner (1976) Cohen-Macaulay quotients of polynomial rings, Advances In Math. 21, 30–49.

    Article  MathSciNet  MATH  Google Scholar 

  51. G.-C. Rota (1964) On the foundations of combinatorial theory: I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, 340–368.

    Article  MathSciNet  MATH  Google Scholar 

  52. L. Solomon (1966) The order of the finite Chevalley groups. J. Algebra 3, 376–393.

    Article  MathSciNet  MATH  Google Scholar 

  53. L. Solomon (1968) A decomposition of the group algebra of a finite Coxeter group, J. Algebra 9, 220–239.

    Article  MathSciNet  MATH  Google Scholar 

  54. R. P. Stanley (1972) Ordered structures and partitions, Mem. Amer. Math. Soc. 119.

    Google Scholar 

  55. R. P. Stanley (1972) Supersolvable lattices, Algebra Universalis 2, 197–217.

    Article  MathSciNet  MATH  Google Scholar 

  56. R. P. Stanley (1974) Finite lattices and Jordan-Hölder sets, Algebra Universalis 4, 361–371.

    Article  MathSciNet  MATH  Google Scholar 

  57. R. P. Stanley (1974) Combinatorial reciprocity theorems, Advances In Math. 14, 194–253.

    Article  MathSciNet  MATH  Google Scholar 

  58. R. P. Stanley (1975) Cohen-Macaulay rings and constructible poly topes, Bull. Amer. Math. Soc. 81, 133–135.

    Article  MathSciNet  MATH  Google Scholar 

  59. R. P. Stanley (1977) Cohen-Macaulay complexes, in Higher Combinatorics ( M. Aigner, ed.), Reidel, Dordrecht.

    Google Scholar 

  60. R. P. Stanley (1978) Hilbert functions of graded algebras, Advances In Math. 28, 57–83.

    Article  MathSciNet  MATH  Google Scholar 

  61. R. P. Stanley (1979) Balanced Cohen-Macaulay complexes, Trans. Amer. Math. Soc. 249, 139–157.

    Article  MathSciNet  MATH  Google Scholar 

  62. R. P. Stanley (to appear) Some aspects of groups acting on finite posets, J. Combinatorial Theory A.

    Google Scholar 

  63. R. P. Stanley (in preparation) Some interactions between commutative algebra and combinatorics, Report, Dept. of Math., Univ. of Stockholm, Stockholm, Sweden.

    Google Scholar 

  64. R. Steinberg (1951) A geometric approach to the representation of the full linear group over a Galois field, Trans. Amer. Math. Soc. 71, 274–282.

    Article  MathSciNet  MATH  Google Scholar 

  65. M. Wachs (to appear) On the relationship between shellable and Cohen-Macaulay posets.

    Google Scholar 

  66. J.W. Walker (1981) Topology and combinatorics of ordered sets, Ph.D. Thesis, Massachusetts Institute of Technology.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 D. Reidel Publishing Company

About this paper

Cite this paper

Björner, A., Garsia, A.M., Stanley, R.P. (1982). An Introduction to Cohen-Macaulay Partially Ordered Sets. In: Rival, I. (eds) Ordered Sets. NATO Advanced Study Institutes Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7798-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7798-3_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7800-3

  • Online ISBN: 978-94-009-7798-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics