Skip to main content

Extremal Problems in Partially Ordered Sets

  • Conference paper
Ordered Sets

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 83))

Abstract

The central problem among extremal problems in partially ordered sets (posets) is to find the largest set of mutually incomparable elements in a poset. The first results were obtained by Sperner in 1928 [Sr]: the maximum-sized set of mutually incomparable subsets of an n-element set consists of those subsets with [n/2] elements, or those with [n/2] elements. A completely different approach was taken by Dilworth in 1950 [Di]: the size of the largest incomparable collection (antichain) equals the smallest number of totally ordered collections (chains) whose union includes all of the elements of the poset.

Sperner’s theorem is typical of attempts to characterize extremal configurations explicitly for a class of posets. Dilworth’s theorem applies, to all posets but gives a less “precise” result: it gives only the maximum size (although many algorithms which compute that will also find a maximum collection).

Both of these theorems have been proved in many ways and, especially in recent years, both have been generalized in many ways. We also consider several other extremal problems, some arising from the correspondence between the antichains and the order ideals of a poset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.L. Abbot, D. Hanson, N. Sauer, Intersection theorems for systems of sets. J. Comb. Theory A 12 (1972), 381–389.

    Google Scholar 

  2. R. Ahlswede, Simple hypergraphs with maximal number of adjacent pairs of edges. J. Comb. Theory B 28 (1980), 164–167.

    MathSciNet  MATH  Google Scholar 

  3. R. Ahlswede and D.E. Daykin, An inequality for the weights of two families of sets, their unions and intersections. Z. Wahrsch. V. Geb. 43 (1978), 183–185.

    MathSciNet  MATH  Google Scholar 

  4. R. Ahlswede and D.E. Daykin, Inequalities for a pair of maps S × S → S with S a finite set, Math. Zeitschr. 165 (1979), 267–289.

    MathSciNet  MATH  Google Scholar 

  5. R. Ahlswede and G.O.H. Katona, Graphs with maximal number of adjacent pairs of edges. Acta Math. Acad. Sci. Hung. 32 (1978), 97–120.

    MathSciNet  MATH  Google Scholar 

  6. M. Aigner, Lexicographic matching in Boolean algebras. J. Comb. Theory B 14 (1973), 187–194.

    MathSciNet  MATH  Google Scholar 

  7. M. Aigner, Symmetrische Zerlegung von Kettenprodukten. Monatshefte für Mathematik 79 (1975), 177–189.

    MathSciNet  MATH  Google Scholar 

  8. M.O. Albertson and K.A. Berman, The chromatic difference sequence of a graph. J. Comb. Theory B 29 (1980), 1–12.

    MathSciNet  Google Scholar 

  9. M.O. Albertson and K.A. Berman, Critical graphs for chromatic difference sequences. Disc. Math. 31 (1980), 225–233.

    MathSciNet  MATH  Google Scholar 

  10. M.O. Albertson, A new paradigm for duality questions, preprint.

    Google Scholar 

  11. M.O. Albertson and K.L. Collins, Duality and perfection for edges in cliques, to appear.

    Google Scholar 

  12. M.O. Albertson, K.L. Collins, and J.B. Shearer, Duality and perfection for r-clique graphs. Proc. 12th S.E. Conf. Comb., Graph Th. and Computing.

    Google Scholar 

  13. B. Alspach, T.C. Brown, P. Hell, On the density of sets containing no k-element arithmetic progression of a certain kind. J. London Math. Soc. (2) 13 (1976), 226–234.

    MathSciNet  MATH  Google Scholar 

  14. I. Anderson, An application of a theorem of deBruijn, Tengbergen, and Kruyswijk. J. Comb. Theory 3 (1967), 43–47.

    MATH  Google Scholar 

  15. I. Anderson, On the divisors of a number. J. London Math. Soc. 43 (1968), 410–418.

    MathSciNet  MATH  Google Scholar 

  16. I. Anderson, Intersection theorems and a lemma of Kleitman. Disc. Math. 16 (1976), 181–185.

    MATH  Google Scholar 

  17. H.L. Baker, Jr., Complete amonotonic decompositions of compact continua. Proc. Amer. Math. Soc. 19 (1968), 847–853.

    MathSciNet  MATH  Google Scholar 

  18. H.L. Baker, Maximal independent collections of closed sets. Proc. Amer. Math. Soc. 32 (1972), 605–610.

    MathSciNet  MATH  Google Scholar 

  19. K.A. Baker, A generalization of Sperner’s lemma. J. Comb. Theory 6 (1969), 224–225.

    MATH  Google Scholar 

  20. K.A. Baker and A.R. Stralka, Compact, distributive lattices of finite breadth. Pacific J. Math. 34 (1970), 311–320.

    MathSciNet  MATH  Google Scholar 

  21. R. Balbes, On counting Sperner families. J. Comb. Theory A 27 (1979), 1–9.

    MathSciNet  MATH  Google Scholar 

  22. I. Bárány, A short proof of Kneser’s conjecture. J. Comb. Theory A 25 (1978), 325–326.

    MATH  Google Scholar 

  23. Z. Baranyai, The edge coloring of complete hypergraphs, I. J. Comb. Theory B 26 (1979), 276–294.

    MathSciNet  MATH  Google Scholar 

  24. C.J.K. Batty and H.W. Bollmann, Generalised Holley-Preston inequalities on measure spaces. Z. Wahrsch. V. Geb. 53 (1980), 157–173.

    MathSciNet  MATH  Google Scholar 

  25. D. Baumert, E.R. McEliece, E.R. Rodemich, and H. Rumsey, A probabilistic version of Sperner’s theorem, to appear.

    Google Scholar 

  26. F.A. Behrend, Generalization of an inequality of Heilbron and Rohrbach, Bull. Amer. Math. Soc. 54 (1948), 681–684.

    MathSciNet  MATH  Google Scholar 

  27. A. Békéssy and J. Demetrovics, Contribution to the theory of data base relations. Disc. Math. 27 (1979), 1–10.

    MATH  Google Scholar 

  28. A. Békéssy, J. Demetrovics, L. Hannák, P. Frankl, and G. Katona, On the number of maximal dependencies in a data base relation of fixed order. Disc. Math. 30 (1980), 83–88.

    MATH  Google Scholar 

  29. C. Berge, Nombres de coloration de l’hypergraphs h-parti complete. Hypergraph Seminar (C. Berge and D. Ray-Chaudhuri), Springer-Verlag Lect. Notes 411 (1974), 13–20.

    MathSciNet  Google Scholar 

  30. C. Berge, A theorem related to the Chvátal conjecture. Proc. 5th British Comb. Conf. Aberdeen (1975), (C.St.J.A. Nash-Williams and J. Sheehan ), Utilitas, (1976), 35–40.

    Google Scholar 

  31. C. Berge, Packing problems and hypergraph theory: a survey. Annals of Disc. Math. 4 (1979), 3–37.

    MathSciNet  MATH  Google Scholar 

  32. J. Berman and P. Kohler, Cardinalities of finite distributive lattices. Mitt. Math. Sem. Giessen (2) (1976), 103–124.

    MathSciNet  Google Scholar 

  33. A.J. Bernstein, Maximally connected arrays on the n-cube. SIAM J. Appl. Math. 15 (1967), 1485–1489.

    MATH  Google Scholar 

  34. B. Bollobás, On generalized graphs. Acta Math. Acad. Sci. Hung. 16 (1965), 447–952.

    MATH  Google Scholar 

  35. B. Bollobás, Sperner systems consisting of pairs of complementary subsets. J. Comb. Theory A 15 (1973), 363–366.

    MATH  Google Scholar 

  36. B. Bollobás, D.E. Daykin and P. Erdös, Sets of independent edges of a hypergraphs. Quart. J. Math. Oxford (2) 21 (1976), 25–32.

    Google Scholar 

  37. A. Brace and D.E. Daykin, A finite set covering theorem, Bull. Austral. Math. Soc. 5 (1971) 197–202.

    MathSciNet  MATH  Google Scholar 

  38. A. Brace and D.E. Daykin, A finite set covering theorem II, Bull. Austral. Math. Soc. 6 (1972), 19–24.

    MathSciNet  MATH  Google Scholar 

  39. A. Brace and D.E. Daykin, A finite set covering theorem III, Bull. Austral. Math. Soc. 6 (1972) 417–433.

    MathSciNet  MATH  Google Scholar 

  40. A. Brace and D.E. Daykin, Sperner type theorems for finite sets. Proc. Brit. Comb. Conf. Oxford (1972), 18–37.

    Google Scholar 

  41. A. Brace and D.E. Daykin, A finite set covering theorem IV, Coll. Math. Janos Bolyai (Keszethey) 10 (1973), 199–203.

    MathSciNet  Google Scholar 

  42. A.E. Brauwer and A. Schrijver, Uniform hypergraphs. Packing and Covering in Combinatorics, Math. Centre Tracts 106 (1979), 39–71.

    Google Scholar 

  43. T.C. Brown, A proof of Sperner’s lemma via Hall’s theorem. Math. Proc. Camb. Phil. Soc. 78 (1975), 387.

    MATH  Google Scholar 

  44. N. deBruijn, C. Tengbergen, D. Kruyswijk, On the set of divisors of a number. Nieuw Arch. Wiskunde 23 (1951), 191–193.

    Google Scholar 

  45. H.-J. Burscheid, Uber die Breite des endlichen Kardinalen Produktes von endlichen Ketten. Mathematische Nachrichten 52 (1972), 283–295.

    MathSciNet  MATH  Google Scholar 

  46. E.R. Canfield, On the location of the maximum Stirling numbers of the second kind. Studies in Appl. Math. 59 (1978), 83–93.

    MathSciNet  Google Scholar 

  47. E.R. Canfield, On a problem of Rota. Advances in Math. 29 (1978), 1–11.

    MathSciNet  MATH  Google Scholar 

  48. E.R. Canfield, A Sperner property preserved by products. Linear and Multilinear Alg. 9 (1980), 151–157.

    MathSciNet  MATH  Google Scholar 

  49. S. Chaiken, D.J. Kleitman, M. Saks, and J. Shearer, Covering regions with rectangles. SIAM J. Alg. and Disc. Meth. 2(1981).

    Google Scholar 

  50. V. Chvátal, An extremal set-intersection theorem. J. London Math. Soc. (2) 9 (1974), 355–359.

    MathSciNet  MATH  Google Scholar 

  51. V. Chvátal, Intersecting families of edges in hypergraphs having the hereditary property. Hypergraph Seminar (C. Berge and D. Ray-Chaudhuri), Springer-Verlag Lect. Notes 411 (1974) 61–66.

    Google Scholar 

  52. G.F. Clements, On the existence of distinct representative sets for subsets of a finite set. Canad. J. Math. 22 (1970) 1284–1292.

    MathSciNet  MATH  Google Scholar 

  53. G.F. Clements, Sets of lattice points which contain a maximal number of edges. Proc. Amer. Math. Soc. 27 (1971), 13–15.

    MathSciNet  MATH  Google Scholar 

  54. G.F. Clements, More on the generalized Macaulay theorem. Disc. Math. 1 (1971), 247–255.

    MathSciNet  MATH  Google Scholar 

  55. G.F. Clements, A minimization problem concerning subsets of a finite set. Disc. Math. 4 (1973), 123–128.

    MathSciNet  MATH  Google Scholar 

  56. G.F. Clements, Inequalities concerning numbers of subsets of a finite set. J. Comb. Theory A 17 (1974), 227–244.

    MathSciNet  MATH  Google Scholar 

  57. G.F. Clements, Sperner’s theorem with constraints, Disc. Math. 10 (1974), 235–255.

    MathSciNet  MATH  Google Scholar 

  58. G.F. Clements, Intersection theorems for sets of subsets of a finite set. Quart. J. Math. Oxford (2) 27 (1976), 325–337.

    MathSciNet  MATH  Google Scholar 

  59. G.F. Clements, The Kruskal-Katona method made explicit. J. Comb. Theory A 21 (1976) 245–249.

    MathSciNet  MATH  Google Scholar 

  60. G.F. Clements, An existence theorem for antichains. J. Comb. Theory A 22 (1977), 368–371.

    MathSciNet  MATH  Google Scholar 

  61. G.F. Clements, More on the generalized Macaulay theorem II, Disc. Math. 18 (1977), 253–264.

    MathSciNet  MATH  Google Scholar 

  62. G.F. Clements, The minimal number of basic elements in a multiset antichain. J. Comb. Theory A 25 (1978), 153–162.

    MathSciNet  MATH  Google Scholar 

  63. G.F. Clements and H.-D.O.F. Gronau, On maximal antichains containing no set and its complement. Disc. Math. 33 (1981), 239–247.

    MathSciNet  MATH  Google Scholar 

  64. G.F. Clements and B. Lindström, A generalization of a combinatorial theorem of Macaulay. J. Comb. Theory 7 (1969), 230–238.

    MATH  Google Scholar 

  65. G.B. Dantzig and A. Hoffman, On a theorem of Dilworth, Linear inequalities and Mated systems, (H.W. Kuhn and A.W. Tucker) Annals of Math Studies, 38 (1966), 207–214.

    MathSciNet  Google Scholar 

  66. D.E. Daykin, A simple proof of Katona’s theorem. J. Comb. Theory A 17 (1974), 252–253.

    MathSciNet  MATH  Google Scholar 

  67. D.E. Daykin, Erdös-Ko-Rado from Kruskal-Katona, J. Comb. Theory A 17 (1974), 254–255.

    MathSciNet  MATH  Google Scholar 

  68. D.E. Daykin, An algorithm for cascades giving Katona-type inequalities. Nanta Math. 8(1975)2, 78–83.

    MathSciNet  MATH  Google Scholar 

  69. D.E. Daykin, Antichains in the lattice of subsets of a finite set. Nanta Math. 8(1975)2, 84–95.

    MathSciNet  MATH  Google Scholar 

  70. D.E. Daykin, Poset functions commuting with the product and yielding Chebyshev type inequalities. Problemes Comb, et Theorie des Graphs (J.C. Bermond), C.N.R.S. Colloques, Paris (1976), 93–98.

    Google Scholar 

  71. D.E. Daykin, A lattice is distributive iff ∣ A ∣ ∣ B ∣ ⩽ ∣ A∧B ∣ ∣ A∨B ∣ Nanta Math. 10 (1977), 58–60.

    MathSciNet  MATH  Google Scholar 

  72. D.E. Daykin, Minimum subcover of a finite set, Amer. Math. Monthly 85 (1978), 766.

    MathSciNet  Google Scholar 

  73. D.E. Daykin, Inequalities among the subsets of a set. Nanta Math. 12 (1979), 137–145.

    MathSciNet  MATH  Google Scholar 

  74. D.E. Daykin, A hierarchy of inequalities. Studies in Applied Math. 63 (1980), 263–274.

    MathSciNet  MATH  Google Scholar 

  75. D.E. Daykin, Functions on a distributive lattice with a polarity Quart. J. Math. Oxford, to appear.

    Google Scholar 

  76. D.E. Daykin and P. Frankl, Families of finite sets satisfying union conditions, preprint.

    Google Scholar 

  77. D.E. Daykin and P. Frankl, Inequalities for subsets of a set and LYM posets, preprint.

    Google Scholar 

  78. D.E. Daykin and P. Frankl, Extremal problems on families of subsets of a set generated by a graph, preprint.

    Google Scholar 

  79. D.E. Daykin, P. Frankl, C. Greene, and A.J.W. Hilton, A generalization of Sperner’s theorem, preprint.

    Google Scholar 

  80. D.E. Daykin, J. Godfrey, and A.J.W. Hilton, Existence theorems for Sperner families. J. Comb. Theory A 17 (1974), 245–251.

    MathSciNet  MATH  Google Scholar 

  81. D.E. Daykin and A.J.W. Hilton, Pairings from down-sets in distributive lattices, to appear.

    Google Scholar 

  82. D.E. Daykin, D.J. Kleitman, and D.B. West, The number of meets between two subsets of a lattice. J. Comb. Theory A 26 (1979), 135–156.

    MathSciNet  MATH  Google Scholar 

  83. D.E. Daykin and L. Lovasz, The number of values of a Boolean function, J. Lond. Math. Soc. (2) 12 (1976), 225–230.

    MathSciNet  MATH  Google Scholar 

  84. D. Deckard and L.K. Durst, Unique factorization in power series rings and semigroups. Pacific J. Math. 16 (1966) 239+.

    MathSciNet  Google Scholar 

  85. M. Deza, Solution d’un probleme de Erdös-Lovász. J. Comb. Theory B 16 (1974), 166–167.

    MathSciNet  Google Scholar 

  86. M. Deza, P. Erdös and P. Frankl, Intersection properties of systems of finite sets. Combinatorics, Colloq. János Bolyai, 18(1976), 251–256. Also, J. Lond. Math. Soc. (3)36(1978), 369–384.

    Google Scholar 

  87. M. Deza, P. Erdös and N.M. Singhi, Combinatorial problems on subsets and their intersections. Studies in Foundations and Combinatorics (G.-C. Rota) vol. 1, Academic Press, (1978), 259–265.

    Google Scholar 

  88. R.P. Dilworth, A decomposition theorem for partially ordered sets. Annals of Math. 51 (1950), 161–165.

    MathSciNet  MATH  Google Scholar 

  89. R.P. Dilworth, Some combinatorial problems on partially ordered sets. Combinatorial Analysis (Proc. Symp. Appl. Math. ), Amer. Math. Soc. (1960), 85–90.

    Google Scholar 

  90. R.P. Dilworth and C. Greene, A counterexample to the generalization of Sperner’s theorem. J. Comb. Theory 10 (1971), 18–21.

    MathSciNet  MATH  Google Scholar 

  91. T.A. Dowling and W.A. Denig, Geometries associated with partially ordered sets. Higher Combinatorics (M. Aigner ), D. Reidel Publishing Co. (1977), 103–116.

    Google Scholar 

  92. D.A. Drake, Another note on Sperner’s lemma. Canad. Math. Bull. 14 (2) (1971), 255–256.

    MathSciNet  MATH  Google Scholar 

  93. R. Duke and P. Erdös, Systems of finite sets having a common intersection.

    Google Scholar 

  94. B. Dushnik and E. Miller, Partially ordered sets. Amer. J. Math. 63 (1961), 600–610.

    MathSciNet  Google Scholar 

  95. A. Ehrenfeucht and J. Mycielski, On families of intersecting sets. J. Comb. Theory A 17 (1974) 259–260.

    MathSciNet  MATH  Google Scholar 

  96. P. Erdös, On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc. 51 (1945), 898–902.

    MathSciNet  MATH  Google Scholar 

  97. P. Erdös, A problem of independent r-tuples, Ann. Univ. Sci. Budapest 8 (1965), 93–95.

    MATH  Google Scholar 

  98. P. Erdös, Problems and results on finite and infinite combinatorial analysis. Combinatorics, Colloq. János Bolyai 10 (1973), 403–424.

    Google Scholar 

  99. P. Erdös, M. Herzog, and J. Schönheim, An extremal problem on the set of non-coprime divisions of a number. Israel J. of Math. 8 (1970), 408–412.

    MATH  Google Scholar 

  100. P. Erdös and D.J. Kleitman, On collections of subsets containing no 4-member Boolean algebra, Proc. Amer. Math. Soc. 28 (1971) 507–510.

    Google Scholar 

  101. P. Erdös and D.J. Kleitman, Extremal problems among subsets of a set. Discrete Math. 8 (1974), 281–294.

    MathSciNet  MATH  Google Scholar 

  102. P. Erdös, Chao Ko, and R. Rado, Intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2) 12 (1961), 313–320.

    MATH  Google Scholar 

  103. P. Erdös, A. Hajnal, and E.C. Milner, On the complete subgraphs of graphs defined by systems of sets, Acta Math. Acad. Sci. Hung. 17 (1966), 159–229.

    MATH  Google Scholar 

  104. P. Erdös and J. Komlós, On a problem of Moser. Combinatorial Theory and its Applications, Balatonfured 1969, Colloq. János Bolyai (1970), 365–367.

    Google Scholar 

  105. P. Erdös and R. Rado, Intersection theorems for systems of sets. J. London Math. Soc. 35 (1960), 85–90.

    MathSciNet  MATH  Google Scholar 

  106. P. Erdös and J. Schönheim, On the set of non-pairwise coprime divisions of a number. Combinatorial Theory and its Applications, Balatonfured 1969, Colloq. János Bolyai (1970).

    Google Scholar 

  107. P. Erdös and E. Szemerédi, Combinatorial properties of systems of sets. J. of Comb. Theory A 24 (1978), 308–313.

    MATH  Google Scholar 

  108. P. Erdös, A. Sarkosy, and E. Szermeredi, On the solvability of the equations [ai,aj]=ar and (ai′,aj′) = ar′ in sequences of positive density. J. Math. Anal. Appl. 15 (1966), 60–64.

    MathSciNet  MATH  Google Scholar 

  109. K. Fan, On Dilworth’s coding theorem. Math. Z. 127 (1972), 92–94.

    MathSciNet  MATH  Google Scholar 

  110. S. Foldes and P.L. Hammer, Split graphs having Dilworth number two. Canad. J. Math. 29 (1977), 666–672.

    MathSciNet  MATH  Google Scholar 

  111. S.V. Fomin, Finite partially ordered sets and Young tableaux. Soviet Math. Dokl. 19 (1978), 1510–1514.

    MATH  Google Scholar 

  112. C.M. Fortuin, P.W. Kasteleyn and J. Ginibre, Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 (1971), 89–103.

    MathSciNet  MATH  Google Scholar 

  113. A. Frank, On chain and antichain families of a partially ordered set. J. Comb. Theory B 29 (1980), 176–184.

    MATH  Google Scholar 

  114. P. Frankl, A theorem on Sperner systems satisfying an additional condition. Studia Sci. Math. Hung. 9 (1974), 425–431.

    MathSciNet  Google Scholar 

  115. P. Frankl, The proof of a conjecture of G. O. Katona. J. Comb. Theory A 19 (1975), 208–213.

    MathSciNet  MATH  Google Scholar 

  116. P. Frankl, On Sperner families satisfying an additional condition. J. Comb. Theory A 20 (1976), 1–11.

    MathSciNet  MATH  Google Scholar 

  117. P. Frankl, Generalizations of theorems of Katona and Milner. Acta Math. Acad. Sci. Hung. 27 (1976), 359–363.

    MathSciNet  MATH  Google Scholar 

  118. P. Frankl, The Erdös-Ko-Rado theorem is true for n = ckt. Combinatorics, Colloq. János Bolyai 18 (1976), 365–375.

    MathSciNet  Google Scholar 

  119. P. Frankl, Families of finite sets satisfying an intersection condition. Bull. Austral. Math. Soc. 15 (1976), 73–79.

    MathSciNet  MATH  Google Scholar 

  120. P. Frankl, Families of finite sets containing no k disjoint sets and their union. Per. Math. Hung. 8 (1977), 29–31.

    MathSciNet  MATH  Google Scholar 

  121. P. Frankl, On the minimum number of disjoint pairs in a family of finite sets. J. Comb. Theory A 22 (1977), 249–251.

    MathSciNet  MATH  Google Scholar 

  122. P. Frankl, On families of finite sets no two of which intersect in a singleton. Bull. Austral. Math. Soc. 17 (1977), 125–134.

    MathSciNet  MATH  Google Scholar 

  123. P. Frankl, On intersecting families of finite sets. J. Comb. Theory A 24 (1978), 146–161.

    MathSciNet  MATH  Google Scholar 

  124. P. Frankl, An extremal problem for 3-graphs. Acta Math. Acad. Sci. Hung. 32 (1978), 157–160.

    MathSciNet  Google Scholar 

  125. P. Frankl, A Sperner-type theorem for families of finite sets. Per. Math. Hung. 9 (1978), 257–267.

    MathSciNet  MATH  Google Scholar 

  126. P. Frankl, Families of finite sets satisfying a union condition. Disc. Math. 26 (1979), 111–118.

    MathSciNet  MATH  Google Scholar 

  127. P. Frankl and M. Deza, On the maximum number of permutations with given maximal or minimal distance. J. Comb. Theory A 22 (1977), 352–360.

    MathSciNet  MATH  Google Scholar 

  128. P. Frankl and Z. Füredi, The Erdös-Ko-Rado theorem for integer sequences. SIAM J. Alg. Disc. Meth. 1 (1980), 376–381.

    MATH  Google Scholar 

  129. P. Frankl and A.J.W. Hilton, On the minimum number of sets comparable with some members of a set of finite sets. J. Lond. Math. Soc. (2) 15 (1977), 16–18.

    MathSciNet  MATH  Google Scholar 

  130. R. Freese, An application of Dilworth’s lattice of maximal antichains. Disc. Math. 7 (1974), 107–109.

    MathSciNet  MATH  Google Scholar 

  131. D.R. Fulkerson, Note on Dilworth’s decomposition theorem for partially ordered sets. Proc. Amer. Math. Soc. 7 (1956), 701–702.

    MathSciNet  MATH  Google Scholar 

  132. Z. Füredi, On maximal intersecting families of finite sets. J. Comb. Theory A 28 (1980), 282–289.

    MATH  Google Scholar 

  133. E.R. Gansner, Acyclic digraphs, Young Tableaux and nilpotent matrices, to appear.

    Google Scholar 

  134. M. Gereb, On the smallest maximal set of non-pairwise coprime divisions of a number. Math. Lapok. 24 (1973), 375–380.

    Google Scholar 

  135. I. Gertsbakh and H.I. Stern, Minimal resources for fixed and variable job schedules. Operations Research 26 (1978), 68–85.

    MathSciNet  MATH  Google Scholar 

  136. R.L. Graham, Linear extensions of partial orders and the FKG inequality, in this volume.

    Google Scholar 

  137. R.L. Graham and L.H. Harper, Some results on matching in bipartite graphs, SIAM J. Appl. Math. 17 (1969), 1017–1022.

    MathSciNet  MATH  Google Scholar 

  138. R.L Graham, A.C. Yao, and F.F. Yao, Some monotonicity properties of partial orders. SIAM J. Alg. Disc. Meth. 1 (1980), 251–258.

    MathSciNet  MATH  Google Scholar 

  139. C. Greene, An extension of Schensted’s theorem. Advances in Math. 14 (1974), 254–265.

    MathSciNet  MATH  Google Scholar 

  140. C. Greene, Sperner families and partitions of a partially ordered set. Combinatorics (Hall and J.H. Van Lint), Math. Center Tracts 56 (1974), 91–106.

    MathSciNet  Google Scholar 

  141. C. Greene, Some partitions associated with a partially ordered set. J. Comb. Theory A 20 (1976), 69–79.

    MathSciNet  MATH  Google Scholar 

  142. C. Greene and A.J.W. Hilton, Some results on Sperner families. J. Comb. Theory A 26 (1979), 202–209.

    MathSciNet  MATH  Google Scholar 

  143. C. Greene, G.O.H. Katona and D.J. Kleitman, Extensions of the Erdös-Ko-Rado theorem. Studies in Appl. Math. 55 (1976), 1–8.

    MathSciNet  MATH  Google Scholar 

  144. C. Greene and D.J. Kleitman, The structure of Sperner k-families. J. Comb. Theory A 20 (1976), 41–68.

    MathSciNet  Google Scholar 

  145. C. Greene and D.J. Kleitman, Strong versions of Sperner’s Theorem. J. Comb. Theory A 20 (1976), 80–88.

    MathSciNet  MATH  Google Scholar 

  146. C. Greene and D.J. Kleitman, Proof techniques in the theory of finite sets. Studies in Combinatorics, (G.-C. Rota), MAA Studies in Math. 17 (1978) 22–79.

    MathSciNet  Google Scholar 

  147. J.R. Griggs, Symmetric chain orders, Sperner theorems and loop matching, PhD Thesis, M.I.T. (1977).

    Google Scholar 

  148. J.R. Griggs, Sufficient conditions for a symmetric chain order. SIAM J. Appl. Math. 32 (1977), 807–809.

    MathSciNet  MATH  Google Scholar 

  149. J.R. Griggs, Another three-part Sperner theorem. Studies in Applied Math. 57 (1977), 181–184.

    MathSciNet  Google Scholar 

  150. J.R. Griggs, On chains and Sperner k-families in ranked posets. J. Comb. Theory A 28 (1980), 156–168.

    MathSciNet  MATH  Google Scholar 

  151. J.R. Griggs, Poset measure and saturated partitions, preprint.

    Google Scholar 

  152. J.R. Griggs, Recent results on the Littlewood-Offord problem, to appear.

    Google Scholar 

  153. J.R. Griggs, Collections of subsets with the Sperner property, preprint.

    Google Scholar 

  154. J.R. Griggs and D.J. Kleitman, A three-part Sperner theorem. Disc. Math. 17 (1977), 281–289.

    MathSciNet  MATH  Google Scholar 

  155. J.R. Griggs, D. Sturtevant, and M. Saks, On chains and Sperner k-families in ranked posets, II. J. of Comb. Theory A 29 (1980), 391–394.

    MathSciNet  MATH  Google Scholar 

  156. H.-D.O.F. Gronau, On Sperner families in which no 3 sets have an empty intersection. Acta Cybernetica 4 (1978), 213–220.

    MathSciNet  Google Scholar 

  157. H.-D.O.F. Gronau, On Sperner families in which no k sets have an empty intersection. J. Comb. Theory A 28 (1980), 54–63.

    MathSciNet  MATH  Google Scholar 

  158. H.-D.O.F. Gronau, On maximal antichains consisting of sets and their complements. J. Comb. Theory A 29 (1980), 370–375.

    MathSciNet  MATH  Google Scholar 

  159. R.K. Guy and E.C. Milner, Graphs defined by coverings of a set. Acta Math. Acad. Sci. Hungar. 19 (1968), 7–21.

    MathSciNet  MATH  Google Scholar 

  160. A. Hajnal and B. Rothschild, A generalization of the Erdös-Ko-Rado theorem on finite set systems. J. Comb. Theory A 15 (1973), 359–362.

    MathSciNet  MATH  Google Scholar 

  161. G. Hansel, Sur le nombre des fonctions Booleenes monotones de n variables. C.R. Acad. Sci. Paris 262 (1966), 1088–1090.

    MathSciNet  Google Scholar 

  162. G. Hansel, Complexe et decompositions binomiales, J. Comb. Theory A 12 (1972), 167–183.

    MathSciNet  MATH  Google Scholar 

  163. L.H. Harper, Optimal assignments of numbers to vertices. SIAM J. Appl. Math. 12 (1964) 131–135.

    MathSciNet  MATH  Google Scholar 

  164. L.H. Harper, Optimal numberings and isoperimetric problems on graphs. J. Comb. Theory 1 (1966), 385–393.

    MathSciNet  MATH  Google Scholar 

  165. L.H. Harper, The morphology of partially ordered sets. J. Comb. Theory A 17 (1974), 44–58.

    MathSciNet  MATH  Google Scholar 

  166. A.J.W. Hilton, An intersection theorem for two families of finite sets. Comb. Math, and its Applications, Proc. Conf. Oxford 1969, Academic Press (1971), 137–148.

    Google Scholar 

  167. A.J.W. Hilton, Simultaneously disjoint pairs of subsets of a finite set. Quart. J. Math. Oxford (2) 24 (1973), 81–95.

    MATH  Google Scholar 

  168. A.J.W. Hilton, Simultaneously independent k-sets of edges of a hypergraph.

    Google Scholar 

  169. A.J.W. Hilton, Analogues of a theorem of Erdös, Ko, and Rado on a family of finite sets. Quart. J. Math Oxford (2) 25 (1974), 19–28.

    MATH  Google Scholar 

  170. A.J.W. Hilton, A theorem on finite sets. Quart. J. Math. Oxford (2) 27 (1976), 33–36.

    MATH  Google Scholar 

  171. A.J.W. Hilton, An intersection theorem for a collection of families of subsets of a finite set. J. London Math. Soc. (2) 15 (1977), 369–376.

    MathSciNet  MATH  Google Scholar 

  172. A.J.W. Hilton, Some intersection and union theorems for several families of finite sets. Mathematika 25 (1978), 125–128.

    MathSciNet  Google Scholar 

  173. A.J.W. Hilton, A simple proof of the Kruskal-Katona theorem and of some associated binomial inequalities. Per. Math. Hungar. 10 (1979), 25–30.

    MATH  Google Scholar 

  174. A.J.W. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford (2) 18 (1967), 369–384.

    MathSciNet  MATH  Google Scholar 

  175. M. Hochberg, Restricted Sperner families and s-systems. Disc. Math. 3 (1972), 359–364.

    MathSciNet  MATH  Google Scholar 

  176. M. Hochberg, Doubly incomparable s-systems. Second Int. Conf. on Comb. Math. (A. Gewirtz and L.V. Quintas), Annals of N.Y. Acad, of Sci. 319 (1979), 281–283.

    MathSciNet  Google Scholar 

  177. M. Hochberg and W.M. Hirsch, Sperner families, s-systems, and a theorem of Meshalkin. Int’l. Conf. on Comb. Math. (A. Gewirtz and L.V. Quintas ), N.Y. Acad, of Sciences, (1970), 224–237.

    Google Scholar 

  178. A.J. Hoffman and D.E. Schwartz, On partitions of a partially ordered set. J. Comb. Theory B 23 (1977), 3–13.

    MathSciNet  MATH  Google Scholar 

  179. A.J. Hoffman, Ordered sets and linear programming, in this volume.

    Google Scholar 

  180. R. Holley, Remarks on the FKG inequalities. Comm. Math. Phys. 36 (1974), 227–231.

    MathSciNet  Google Scholar 

  181. W.N. Hsieh, Intersection theorems for systems of finite vector spaces. Disc. Math. 12 (1975), 1–16.

    MATH  Google Scholar 

  182. W.N. Hsieh, Familes of intersecting vector spaces. J. Comb. Theory A 18 (1975), 252–261.

    MATH  Google Scholar 

  183. W.N. Hsieh and D.J. Kleitman, Normalized matching in direct products of partial orders. Studies in Appl. Math. 52 (1973), 285–289.

    MathSciNet  MATH  Google Scholar 

  184. R.E. Jamison-Waldner, Partition numbers for trees and ordered sets. Pacific J. Math., to appear.

    Google Scholar 

  185. L.K. Jones, Note sur une loi de probabilite conditionelle de Kleitman. Disc. Math. 15 (1976), 107–108.

    MATH  Google Scholar 

  186. L.K. Jones, On the distribution of sums of vectors. S1AM J. Appl. Math. 34 (1978), 1–6.

    MATH  Google Scholar 

  187. G.O.H. Katona, Intersection theorems for systems of finite sets. Acta Math. Acad. Sci. Hung. 15 (1964), 329–337.

    MathSciNet  MATH  Google Scholar 

  188. G.O.H. Katona, On a conjecture of Erdös and a stronger form of Sperner’s theorem. Stud. Sci. Math. Hung. 1 (1966), 59–63.

    MathSciNet  MATH  Google Scholar 

  189. G.O.H. Katona, A theorem of finite sets. Theory of graphs, Proc. Coll. Tihany, 1966. Akademiai Kiado (1966), 187–207.

    Google Scholar 

  190. G.O.H. Katona, A generalization of some generalizations of Sperner’s theorem. J. Comb. Theory B 12 (1972), 72–81.

    MathSciNet  MATH  Google Scholar 

  191. G.O.H. Katona, Families of subset having no subset containing another one with small difference. Nieuw Arch. Wiskd. (3) 20 (1972), 54–67.

    MathSciNet  MATH  Google Scholar 

  192. G.O.H. Katona, A simple proof of the Erdös-Ko-Rado theorem. J. Comb. Theory B 13 (1972), 183–184.

    MathSciNet  MATH  Google Scholar 

  193. G.O.H. Katona, A three part Sperner theorem. Stud. Sci. Math. Hung. 8 (1973), 379–390.

    MathSciNet  Google Scholar 

  194. G.O.H. Katona, Two applications of Sperner-type theorems (for search theory and truth functions). Per. Math. Hungar. 4 (1973) 19–23.

    MathSciNet  Google Scholar 

  195. G.O.H. Katona, Extremal problems for hypergraphs. Combinatorics (M. Hall ahd J.H. Van Lint), Math. Center Tracts 56 (1974), 13–42.

    MathSciNet  Google Scholar 

  196. G.O.H. Katona, On a conjecture of Ehrenfeucht & Mycielski.

    Google Scholar 

  197. G.O.H. Katona, Continuous versions of some extremal hypergraph problems. Combinatorics, Colloq. János Bolyai 18 (1976), 653–677.

    MathSciNet  Google Scholar 

  198. G.O.H. Katona, Continuous versions of some extremal hypergraph problems, II. Acta Math. Acad. Sci. Hung. 35 (1980), 67–77.

    MathSciNet  MATH  Google Scholar 

  199. D. Kelly and W.T. Trotter Jr., Dimension theory for ordered sets, in this volume.

    Google Scholar 

  200. M.J. Klass, Maximum antichains: a sufficient condition. Proc. Amer. Math. Soc. 45 (1974), 28–30.

    MathSciNet  MATH  Google Scholar 

  201. D.J. Kleitman, On a lemma of Littlewood and Offord on the distribution of certain sums. Math. Zeitsch. 90 (1965), 251–259.

    MathSciNet  MATH  Google Scholar 

  202. D.J. Kleitman, Families of non-disjoint subsets. J. Comb. Theory 1 (1966), 153–155.

    MathSciNet  MATH  Google Scholar 

  203. D.J. Kleitman, On a combinatorial problem of Erdös. Proc. Amer. Math. Soc. 17 (1966), 139–141.

    MathSciNet  MATH  Google Scholar 

  204. D.J. Kleitman, On a combinatorial conjecture of Erdös. J. Comb. Theory 1 (1966) 209–214.

    MathSciNet  MATH  Google Scholar 

  205. D.J. Kleitman, On subsets containing a family of non-commensurable subsets of a finite set. J. Comb. Theory 1 (1966), 297–299.

    MathSciNet  Google Scholar 

  206. D.J. Kleitman, On a conjecture of Milner on k-graphs with non-disjoint edges. J. Comb. Theory 5 (1968), 153–156.

    MathSciNet  MATH  Google Scholar 

  207. D.J. Kleitman, Maximum number of subsets of a finite set no k of which are pairwise disjoint. J. Comb. Theory 5 (1968) 157–163.

    MathSciNet  MATH  Google Scholar 

  208. D.J. Kleitman, On families of subsets of a finite set containing no two disjoint sets and their union. J. Comb. Theory 5 (1968), 235–237.

    MathSciNet  MATH  Google Scholar 

  209. D.J. Kleitman, A conjecture of Erdös-Katona on commeasurable pairs among subsets of an n-set. Theory of Graphs, Proc. Coll. Tihany 1966, Akademiai Kiado (1968), 215–218.

    Google Scholar 

  210. D.J. Kleitman, On Dedekind’s problem: The number of monotone Boolean functions. Proc. Amer. Math. Soc. 21 (1969), 677–682.

    MathSciNet  MATH  Google Scholar 

  211. D.J. Kleitman, On a lemma of Littlewood and Offord on the distribution of linear combinations of vectors. Advances in Math. 5 (1970), 155–157.

    MathSciNet  MATH  Google Scholar 

  212. D.J. Kleitman, The number of Sperner families of subsets of an n element set. Infinite and finite sets, Colloq. János Bolyai (Keszthely) 10 (1973), 989–1001.

    MathSciNet  Google Scholar 

  213. D.J. Kleitman, On an extremal property of antichains in partial orders: the LYM property and some of its implications and applications. Combinatorics (Hall and J.H. Van Lint), Math. Centre Tracts 56 (1974), 77–90.

    MathSciNet  Google Scholar 

  214. D.J. Kleitman, Some new results on the Littlewood-Offord problem. J. Comb. Theory A 20 (1976), 89–113.

    MathSciNet  MATH  Google Scholar 

  215. D.J. Kleitman, Extremal properties of collections of subsets containing no two sets and their union. J. Comb. Theory A 20 (1976), 390–392.

    MathSciNet  MATH  Google Scholar 

  216. D.J. Kleitman, Hypergraphic extremal properties. Proc. Brit. Comb. Conf. (1980).

    Google Scholar 

  217. D.J. Kleitman, M. Edelberg and D. Lubell, Maximal sized antichains in partial orders. Disc. Math. 1 (1971), 47–53.

    MathSciNet  MATH  Google Scholar 

  218. D.J. Kleitman, M.M. Krieger, and B.L. Rothschild, Configurations maximizing the number of pairs of Hamming-adjacent lattice points. Studies in Appl. Math. 50(1971)2.

    Google Scholar 

  219. D.J. Kleitman and T.L. Magnanti, On the latent subsets of intersecting collections. J. Comb. Theory A 16 (1974), 215–220.

    MathSciNet  MATH  Google Scholar 

  220. D.J. Kleitman and G. Markowsky, On Dedekind’s problem: the number of monotone Boolean functions II. Trans. Amer. Math. Soc. 45 (1974), 373–389.

    MathSciNet  Google Scholar 

  221. D.J. Kleitman and E.C. Milner, On the average size of sets in a Sperner family. Disc. Math. 6 (1973) 141–147.

    MathSciNet  MATH  Google Scholar 

  222. D.J. Kleitman and M. Saks, Stronger forms of the LYM inequality, to appear.

    Google Scholar 

  223. D.J. Kleitman and J.B. Shearer, Some monotonicity properties of partial orders. Studies in Appl. Math, to appear.

    Google Scholar 

  224. D.J. Kleitman and J. Spencer, Families of k-independent sets. Disc. Math. 6 (1973), 255–262.

    MathSciNet  MATH  Google Scholar 

  225. R. Kneser, Aufgabe 360. Jahresbericht d. Deutschen Math. Verein (2)58(1955).

    Google Scholar 

  226. J.B. Kruskal, The number of simplices in a complex. Mathematical Optimization Techniques, Univ. of Calif Press, Berkeley and Los Angeles (1963), 251–278.

    Google Scholar 

  227. J.B. Kruskal, The number of s-dimensional faces in a complex: An analogy between the simplex and the cube. J. Comb. Theory 6 (1969) 86–89.

    MathSciNet  MATH  Google Scholar 

  228. K. Leeb, Sperner theorems with choice functions. Vordnunck, to appear.

    Google Scholar 

  229. E. Levine and D. Lubell, Sperner collections on sets of real variables. Int’l. Conf. on Comb. Math. (A. Gewirtz and L.V. Quintas ), N.Y. Acad, of Sci., (1970), 272–276.

    Google Scholar 

  230. M. Lewin, Choice mappings of certain classes of finite sets. Math. Z. 124 (1972), 23–36.

    MathSciNet  Google Scholar 

  231. S.-Y. R. Li, An extremal problem among subsets of a set. J. Comb. Theory A 23 (1977), 341–343.

    MATH  Google Scholar 

  232. S.-Y. R. Li, Extremal theorems on divisors of a number. Disc. Math. 24 (1978), 37–46.

    MATH  Google Scholar 

  233. T.M. Liggett, Extensions of the Erdös-Ko-Rado theorem and a statistical application. J. Comb. Theory A 23 (1977), 15–21.

    MathSciNet  MATH  Google Scholar 

  234. K.-W. Lih, Sperner families over a subset. J. Comb. Theory A 29 (1980), 182–185.

    MathSciNet  MATH  Google Scholar 

  235. K.-W. Lih, Majorization on finite partially ordered sets. SIAM J. Alg. Disc. Meth., to appear.

    Google Scholar 

  236. J.H. Lindsey, Assignment of numbers to vertices. Amer. Math. Monthly 71 (1964) 508–516.

    MathSciNet  Google Scholar 

  237. B. Lindström, Optimal number of faces in cubical complexes. Arkiv. for Mat. 8 (1971) 245–257.

    MATH  Google Scholar 

  238. B. Lindström, A partition of L(3,n) into saturated symmetric chains. Europ. J. Comb. 1 (1980), 61–63.

    MATH  Google Scholar 

  239. N. Linial, Covering digraphs by paths. Disc. Math. 23 (1978) 257–272.

    MathSciNet  MATH  Google Scholar 

  240. N. Linial, Extending the Greene-Kleitman theorem to directed graphs. J. Comb. Theory A 30 (1981), 331–334.

    MathSciNet  MATH  Google Scholar 

  241. W. Lipski Jr., On strings containing all subsets as substrings. Disc. Math. 21 (1978), 253–259.

    MathSciNet  Google Scholar 

  242. C.L. Liu, Sperner’s theorem on maximal-sized antichains and its generalizations. Disc. Math. 11 (1975), 133–139.

    MATH  Google Scholar 

  243. M.L. Livingston, An ordered version of the Erdös-Ko-Rado theorem. J. Comb. Theory A 26 (1979), 162–165.

    MathSciNet  MATH  Google Scholar 

  244. L. Lovász, The Shannon capacity of a graph. IEEE Trans. Info Th. IT-25(1979), 1–7.

    Google Scholar 

  245. L. Lovász, Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theory A 25 (1978), 319–324.

    MATH  Google Scholar 

  246. D. Lubell, A short proof of Sperner’s lemma. J. Comb. Theory (1966), 299.

    Google Scholar 

  247. F.S. Macaulay, Some properties of enumeration in the theory of modular systems. Proc. Lond. Math. Soc. 26 (1927), 531–555.

    MATH  Google Scholar 

  248. J. Marica and J. Schönheim, Differences of sets and a problem of Graham. Canad. Math. Bull. 12 (1969), 635–637.

    MathSciNet  MATH  Google Scholar 

  249. L.D. Meshalkin, A generalization of Sperner’s Theorem on the number of subsets of a finite set. Teor. Verojatnosti Primener 8(1963), 219–220 (in Russian) — Theory Probab. Appl. (English trans.) 8 (1963), 203–204.

    MATH  Google Scholar 

  250. N. Metropolis and G.-C. Rota, Combinatorial structure of the faces of the n-cube. SIAM J. Appl. Math. 35 (1978), 689–694. Also Bull. Amer. Math. Soc. 84 (1978), 284–286.

    MathSciNet  MATH  Google Scholar 

  251. N. Metropolis, G.-C. Rota, V. Strehl, and N. White, Partitions into chains of a class of partially ordered sets. Proc. Amer. Math. Soc. 71 (1978), 193–196.

    MathSciNet  MATH  Google Scholar 

  252. S. Milne, Restricted growth functions and incidence relations of the lattice of partitions of a n-set. Advances in Math. 26 (1977), 290–305.

    MathSciNet  MATH  Google Scholar 

  253. S. Milne, Rank row matchings of partition lattices, the maximum Stirling number and Rota’s conjecture.

    Google Scholar 

  254. E.C. Milner, Intersection theorems for systems of sets. Quart. J. Math. Oxford 18 (1967), 369–384.

    MathSciNet  MATH  Google Scholar 

  255. E.C. Milner, A combinatorial theorem on systems of sets. J. London Math. Soc. 43 (1968), 204–206.

    MathSciNet  MATH  Google Scholar 

  256. L. Mirsky, A dual of Dilworth’s decomposition theorem. Amer. Math. Monthly 78 (1971), 876–877.

    MathSciNet  MATH  Google Scholar 

  257. R. Mullin, On Rota’s problem concerning partitions. Aequationes Math. 2 (1969), 98–104.

    Google Scholar 

  258. G.L. Nemhauser, L.E. Trotter Jr., and R.M. Nauss, Set partitioning and chain decomposition. Management Sci. 20 (1974), 1413–1473.

    MathSciNet  MATH  Google Scholar 

  259. H. Oellrich and K. Steffens, On Dilworth’s decomposition theorem. Disc. Math. 15 (1976), 301–304.

    MathSciNet  MATH  Google Scholar 

  260. G.W. Peck, Maximum antichains of rectangular arrays. J. Comb. Theory A 27 (1979), 397–400.

    MathSciNet  MATH  Google Scholar 

  261. G.W. Peck, Erdös conjecture on sums of distinct numbers. Studies in Appl. Math. 63 (1980), 87–92.

    MathSciNet  MATH  Google Scholar 

  262. M.A. Perles, A proof of Dilworth’s decomposition theorem for partially ordered sets. Israel J. of Math. 1 (1963), 105–107.

    MathSciNet  MATH  Google Scholar 

  263. M.A. Perles, On Dilworth’s theorem in the infinite case. Israel J. of Math. 1 (1963), 108–109.

    MathSciNet  MATH  Google Scholar 

  264. M. Pouzet, Ensemble ordonne universel recouvert par deux chaines. J. Comb. Theory B 25 (1978), 1–25.

    MathSciNet  MATH  Google Scholar 

  265. C.J. Preston, A generalization of the FKG inequalties. Comm. Math. Phys. 36 (1974), 233–241.

    MathSciNet  Google Scholar 

  266. O. Pretzel, On the dimension of partially ordered sets. J. Comb. Theory A 22 (1977), 146–152.

    MathSciNet  MATH  Google Scholar 

  267. O. Pretzel, Another proof of Dilworth’s decomposition theorem. Disc. Math. 25 (1979), 91–92.

    MathSciNet  MATH  Google Scholar 

  268. R.A. Proctor, M.E. Saks and D.G. Sturtevant, Product partial orders with the Sperner property. Disc. Math. 30 (1980), 173–180.

    MathSciNet  MATH  Google Scholar 

  269. G. Purdy, A result on Sperner collections. Utilitas Math. 12 (1977), 95–99.

    MathSciNet  MATH  Google Scholar 

  270. W. Riess, Zwei Optimierungsprobleme auf Ordnungen. Arbeitsbereichte des institute für mathematische Maschinen und Datenverarbeitung (Informatik) II 5 (1978), 50–57.

    MathSciNet  Google Scholar 

  271. E. Rosenthal, Searching in posets, preprint.

    Google Scholar 

  272. G.-C. Rota, A generalization of Sperner’s theorem, research problem. J. Comb. Theory 2 (1967), 104.

    Google Scholar 

  273. I.Z. Ruzsa, Probabilistic generalization of a number-theoretic inequality. Amer. Math. Monthly 83 (1976), 723–725.

    MathSciNet  MATH  Google Scholar 

  274. M. Saks, A short proof of the existence of k-saturated partitions of partially ordered sets. Advances in Math. 33 (1979), 207–211.

    MathSciNet  MATH  Google Scholar 

  275. M. Saks, Dilworth numbers, incidence maps and product partial orders. SIAM J. Alg. Disc. Meth. 1 (1980), 211–216.

    MathSciNet  MATH  Google Scholar 

  276. M. Saks, Duality properties of finite set systems. Ph.D. Thesis, M.I.T. (1980).

    Google Scholar 

  277. W. Sands, Counting antichains in finite partially ordered sets, preprint.

    Google Scholar 

  278. N. Sauer, On the density of families of sets. J. Comb. Theory A 13 (1972), 145–147.

    MathSciNet  MATH  Google Scholar 

  279. J. Schönheim, A generalization of results of P. Erdös, G. Katona and D. J. Kleitman concerning Sperner’s theorem. J. Comb. Theory 11 (1971), 111–117.

    MATH  Google Scholar 

  280. J. Schönheim, On a problem of Daykin concerning intersecting families of sets. Proc. Brit. Comb. Conf. Aberystwyth 1973, Lond. Math. Soc. Lect. Notes 13 (1974), 139–140.

    Google Scholar 

  281. J. Schönheim, On a problem of Purdy related to Sperner systems. Canad. Math. Bull. 17 (1974), 135–136.

    MathSciNet  MATH  Google Scholar 

  282. P.D. Seymour, On incomparable collections of sets. Mathematika 20 (1973), 208–209.

    MathSciNet  MATH  Google Scholar 

  283. P.D. Seymour and D.J.A. Welsh, Combinatorial applications of an inequality from statistical mechanics. Math. Proc. Camb. Phil. Soc. 77 (1975), 485–495.

    MathSciNet  MATH  Google Scholar 

  284. J. Shearer and D.J. Kleitman, Probabilities of independent choices being ordered. Studies in Appl. Math. 60 (1979), 271–276.

    MathSciNet  MATH  Google Scholar 

  285. L.A. Shepp, The FKG Inequality and some monotonicity properties of partial orders. SIAM J. Alg. Disc. Meth. 1 (1980), 295–299.

    MathSciNet  MATH  Google Scholar 

  286. J.H. Spencer, A generalized Rota conjecture for partitions. Studies in Appl. Math. 53 (1974), 239–241.

    MATH  Google Scholar 

  287. E. Sperner, Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27 (1928), 544–548.

    MathSciNet  MATH  Google Scholar 

  288. E. Sperner, Uber einer kombinatorische Satz von Macaulay und seine Anwendung aug die Theorie der Polynomideale. Abh. Math. Sem. Hamburg 7 (1930), 149–163.

    Google Scholar 

  289. R.P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAMJ. Alg. Disc. Meth. 1 (1980), 168.

    MathSciNet  MATH  Google Scholar 

  290. D. Stanton, Some Erdös-Ko-Rado theorems for Chevalley groups. SIAM J. Alg. Disc. Meth. 1 (1980), 160.

    MATH  Google Scholar 

  291. B.S. Stechkin, Yamamoto inequality and gatherings. Transl. from Matematicheskie Zametki 19 (1976), 155–160.

    Google Scholar 

  292. V.S. Tanaev, Optimal decomposition of a partially ordered set into chains. Doklady Akad. Nauk BSSR 23(1979), 389–391. Math. Rev. 80m:06003.

    MathSciNet  MATH  Google Scholar 

  293. C.A. Tovey, Polynomial local improvement algorithms in combinatorial optimization. Ph.D. Thesis, Stanford Dept. of Op. Research (1981).

    Google Scholar 

  294. W.T. Trotter Jr., A note on Dilworth’s embedding theorem. Proc. Amer. Math. Soc. 52 (1975), 33–39.

    MathSciNet  MATH  Google Scholar 

  295. H. Tverberg, On Dilworth’s decomposition theorem for partially ordered sets. J. Comb. Theory 3 (1967), 305–306.

    MathSciNet  MATH  Google Scholar 

  296. D.-L. Wang, On systems of finite sets with constraints in their unions and intersections. J. Comb. Theory A 23 (1977). 344–348.

    MATH  Google Scholar 

  297. D.-L. Wang and P. Wang, Extremal configurations on a discrete torus and a generalization of the generalized Macaulay theorem. SIAM J. Appl. Math. 33 (1977), 55–59.

    MATH  Google Scholar 

  298. D.-L. Wang and P. Wang, Discrete isoperimetric problems. SIAM J. Appl Math. 32 (1977), 860–870.

    MATH  Google Scholar 

  299. D.B. West, A symmetric chain decomposition of L(4,n). Europ. J. Comb. 1 (1980), 379–383.

    MATH  Google Scholar 

  300. D.B. West and D.J. Kleitman, Skew chain orders and sets of rectangles. Disc. Math. 27 (1979), 99–102.

    MathSciNet  MATH  Google Scholar 

  301. D.B. West and C.A. Tovey, Semiantichains and unichain coverings in direct products of partial orders. SIAM J. Alg. and Disc. Meth. 2(1981), Sept.

    Google Scholar 

  302. D.B. West and C.A. Tovey, A sufficient condition for the two-part Sperner property.

    Google Scholar 

  303. D.E. White and S.G. Williamson, Recursive matching algorithms and linear orders on the subset lattice. J. Comb. Theory A 23 (1977), 117–127.

    MathSciNet  MATH  Google Scholar 

  304. E.S. Wolk, On decompositions of partially ordered sets. Proc. Amer. Math. Soc. 15 (1964), 197–199.

    MathSciNet  MATH  Google Scholar 

  305. K. Yamamoto, Logarithmic order of free distributive lattices. J. Math. Soc. Japan 6 (1954), 343–353.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 D. Reidel Publishing Company

About this paper

Cite this paper

West, D.B. (1982). Extremal Problems in Partially Ordered Sets. In: Rival, I. (eds) Ordered Sets. NATO Advanced Study Institutes Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7798-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7798-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7800-3

  • Online ISBN: 978-94-009-7798-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics