Skip to main content

Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts

  • Conference paper
Ordered Sets

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 83))

Abstract

Lattice theory today reflects the general status of current mathematics: there is a rich production of theoretical concepts, results, and developments, many of which are reached by elaborate mental gymnastics; on the other hand, the connections of the theory to its surroundings are getting weaker and weaker, with the result that the theory and even many of its parts become more isolated. Restructuring lattice theory is an attempt to reinvigorate connections with our general culture by interpreting the theory as concretely as possible, and in this way to promote better communication between lattice theorists and potential users of lattice theory.

The approach reported here goes back to the origin of the lattice concept in nineteenth-century attempts to formalize logic, where a fundamental step was the reduction of a concept to its “extent”. We propose to make the reduction less abstract by retaining in some measure the “intent” of a concept. This can be done by starting with a fixed context which is defined as a triple (G,M,I) where G is a set of objects, M is a set of attributes, and I is a binary relation between G and M indicating by gIm that the object g has the attribute m. There is a natural Galois connection between G and M defined by A′ = {mMgIm for all gA} for A \( \subseteq \) G and B’ = {gGgIm for all mB} for B \( \subseteq \) M. Now, a concept of the context (G,M,I) is introduced as a pair (A,B) with A \( \subseteq \) G, B \( \subseteq \) M, A′ = B, and B′ = A, where A is called the extent and B the intent of the concept (A,B). The hierarchy of concepts given by the relation subconcept-superconcept is captured by the definition (A1,B1) ≤ (A 2,B 2) ⇔ A 1 \( \subseteq \) A 2(⇔ B 1 \( \supseteq \) B 2) for concepts (A1,B1) and (A 2,B 2) of (G,M,I). Let L(G,M,I) be the set of all concepts of (G,M,I). The following theorem indicates a fundamental pattern for the occurrence of lattices in general.

THEOREM: Let (G,M,I) be a context. Then (L(G,M,I), ≤) is a complete lattice (called the concept lattice of (G,M,I)) in which infima and suprema can be described as follows:

$$\begin{gathered} \mathop \wedge \limits_{i \in J} ({A_i},{B_i}) = \left( {\mathop \cap \limits_{i \in J} {A_i},{{\left( {\mathop \cap \limits_{i \in J} {A_i}} \right)}^\prime }} \right), \hfill \\ \mathop \vee \limits_{i \in J} ({A_i},{B_i}) = \left( {{{\left( {\mathop \cap \limits_{i \in J} {B_i}} \right)}^\prime },\mathop \cap \limits_{i \in J} {B_i}} \right). \hfill \\ \end{gathered} $$

Conversely, if L is a complete lattice then L ≅ (L(G,M,I), ≤) if and only if there are mappings ϒ: GL and μ: ML such that ϒG is supremum-dense in L, μM is infimum-dense in L, and gIm is equivalent to ϒg ≤ μm for all gG and mM; in particular, L ≅ (L(L, L, ≤),≤).

Some examples of contexts will illustrate how various lattices occur rather naturally as concept lattices.

  1. (i)

    (S,S,≠) where S is a.set.

  2. (ii)

    (,,l) where is the set of all natural numbers.

  3. (iii)

    (V,V *,⊥) where V is a finite-dimensional vector space.

  4. (iv)

    (V,Eq(V), ⊧) where V is a variety of algebras.

  5. (v)

    (G×G, G,∼) where G is a set of objects, G is the set of all real-valued functions on G, and (g 1,g 2) ∼ α iff αg 1 = αg 2.

Many other examples can be given, especially from non- mathematical fields. The aim of restructuring lattice theory by the approach based on hierarchies of concepts is to develop arithmetic, structure and representation theory of lattices out of problems and questions which occur within the analysis of contexts and their concept lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. Banaschewski (1956) Hüllensysteme und Erweiterungen von Quasi-Ordnungen, Z. Math. Logik Grundlagen Math. 2, 117–130.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Birkhoff (1938) Lattices and their applications, Bull. Amer. Math. Soc. 44, 793–800.

    Article  MathSciNet  Google Scholar 

  3. G. Birkhoff (1967) Lattice Theory, Third edition, Amer. Math. Soc., Providence, R. I.

    Google Scholar 

  4. G. Birkhoff (1970) What can lattices do for you? in: Trends in Lattice Theory ( J.C. Abbott, ed.) Van Nostrand- Reinhold, New York, 1–40.

    Google Scholar 

  5. G. Birkhoff (1982) Ordered sets in geometry, in: Symp. Ordered Sets ( I. Rival, ed.) Reidel, Dordrecht-Boston, 107.

    Google Scholar 

  6. H.-H. Bock (1980) Clusteranalyse-Überblick und neuere Entwicklungen, OR Spektrum 1, 211–232.

    Article  MATH  Google Scholar 

  7. P. Crawley and R.A. Dean (1959) Free lattices with infinite operations, Trans. Amer. Math. Soc. 92, 35–47.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Crawley and R.P. Dilworth (1973) Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  9. C.J. Date (1977) An Introduction to Data Base Systems, Second edition, Addison-Wesley, Reading, Mass.

    Google Scholar 

  10. R.A. Dean (1956) Completely free lattices generated by partially ordered sets, Trans. Amer. Math. Soc. 83, 238–249.

    Article  MathSciNet  MATH  Google Scholar 

  11. Deutsches Institut für Normung (1979) DIN 2330, Begriffe und Benennungen, Allgemeine Grundsatze, Beuth, Köln.

    Google Scholar 

  12. Deutsches Institut für Normung (1980) DIN 2331, Bergriffs¬systeme und ihre Darstellung, Beuth, Köln.

    Google Scholar 

  13. K. Diem and C. Lentner (1968) Wissenschaftliche Tabellen, 7. Aufl., J. R. Geigy AG, Basel.

    Google Scholar 

  14. R.P. Dilworth (1950) A decomposition theorem for partially ordered sets, Ann. of Math. (2) 51, 161–166.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Grätzer (1978) General Lattice Theory, Birkhäuser, Basel-Stuttgart.

    Google Scholar 

  16. G. Grätzer, H. Lakser, and C.R. Piatt (1970) Free products of lattices, Fund. Math. 69, 233–240.

    MathSciNet  MATH  Google Scholar 

  17. H. von Hentig (1972) Magier oder Magister? Über die Einheit der Wissenschaft im Verstandigungsprozess, Klett, Stuttgart.

    Google Scholar 

  18. C.A. Hooker (ed.) ( 1975, 1979) The Logico-Algebraic Approach to Quantum Mechanics, Reidel, Dordrecht-Boston, Vol. I and Vol. II.

    MATH  Google Scholar 

  19. B. Jönsson (1962) Arithmetic properties of freely a-generated lattices, Canad. J. Math. 14, 476–481.

    Article  MathSciNet  Google Scholar 

  20. D.H. Krantz, R.D. Luce, P. Suppes, and A. Tversky (1971) Foundations of Measurement, Vol. I, Academic Press, New York.

    MATH  Google Scholar 

  21. H. Lakser (1968) Free Lattices Generated by Partially Ordered Sets, Ph. D. Thesis, Univ. of Manitoba, Winnipeg.

    Google Scholar 

  22. J.W. Lea (1972) An embedding theorem for compact semi- lattices, Proc. Amer. Math. Soc. 34, 325–331.

    Article  MathSciNet  MATH  Google Scholar 

  23. H.M. MacNeille (1937) Partially ordered sets, Trans. Amer. Math. Soc. 42, 416–460.

    Article  MathSciNet  Google Scholar 

  24. H. Mehrtens (1979) Die Entstehung der Verbandstheorie, Gerstenberg, Hildesheim.

    MATH  Google Scholar 

  25. Observer’s Handbook 1981 (1980) Royal Astronomical Society Cänada, Univ. Toronto Press, Toronto.

    Google Scholar 

  26. J. Pflanzagl (1968) Theory of Measurement, Physica-Verlag, Würzburg-Wien.

    Google Scholar 

  27. A. Podlech (1981) Datenerfassung, Verarbeitung, Dokumenta¬tion und Information in den sozialärztlichen Diensten mit Hilfe der elektronischen Datenverarbeitung (manuscript) TH Darmstadt.

    Google Scholar 

  28. H. Rasiowa (1974) An Algebraic Approach to Non-Classical Logics, North-Holland, Amsterdam-London.

    MATH  Google Scholar 

  29. W. Ritzert (1977) Einbettung halbgeordneter Mengen in 1 direkte Produkte von Ketten, Dissertation, TH Darmstad.

    Google Scholar 

  30. I. Rival and R. Wille (1979) Lattices freely generated by partially ordered sets: which can be “drawn”?, J. reine angew. Math. 310, 56–80.

    Article  MathSciNet  Google Scholar 

  31. F.S. Roberts (1979) Measurement Theory, Addison-Wesley, Reading, Mass.

    MATH  Google Scholar 

  32. R.J. Rummel (1970) Applied Factor Analysis, Northwestern Univ. Press, Evanston.

    MATH  Google Scholar 

  33. D.S. Scott (1976) Data types as lattices, SIAM J. Comput. 5, 522–587.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Schmidt (1956) Zur Kennzeichnung der Dedekind- MacNeilleschen Hülle einer geordneten Menge, Arch. Math. 7, 241–249.

    Article  MATH  Google Scholar 

  35. E. Schröder ( 1890, 1891, 1895) Algebra der Logik I, I I, III, Leipzig.

    Google Scholar 

  36. H. Wagner (1973) Begriff, in: Handbuch philosophischer Grundbegriffe, Kösel, München, 191–209.

    Google Scholar 

  37. Ph. M. Whitman (1941) Free lattices, Ann. of Math. (2) 42, 325–330.

    Article  MathSciNet  Google Scholar 

  38. Ph. M. Whitman (1942) Free lattices, II, Ann. of Math. (2) 43, 104–115.

    Article  MathSciNet  Google Scholar 

  39. R. Wille (1977) Aspects of finite lattices, in: Higher Combinatorics ( M. Aigner, ed.) Reidel, Dordrecht-Boston, 79–100.

    Google Scholar 

  40. R. Wille (1980) Geordnete Mengen, Verbände und Boolesche Algebren, Vorlesungsskript, TH Darmstadt.

    Google Scholar 

  41. R. Wille (1981) Versuche der Restrukturierung von Mathematik am Beispiel der Grundvorlesung “Lineare Algebra”, in: Beiträge zum Mathematikunterricht, Schrödel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 D. Reidel Publishing Company

About this paper

Cite this paper

Wille, R. (1982). Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. In: Rival, I. (eds) Ordered Sets. NATO Advanced Study Institutes Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7798-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7798-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7800-3

  • Online ISBN: 978-94-009-7798-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics