Advertisement

Biological Competition: Decision Rules, Pattern Formation, and Oscillations

  • Stephen Grossberg
Chapter
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 70)

Abstract

This article summarizes some of the new mathematical and physical ideas about competition that have emerged during the past eight years. Each of these ideas can be expressed in several ways. For example, every competitive system induces a decision scheme that can be used to analyze its global dynamics. Otherwise expressed, you learn a lot about a competition by keeping track of who is winning it! Otherwise expressed again, you can understand more about certain nonequilibrium systems by measuring where they change fastest rather than where they achieve equilibrium. Still otherwise expressed, you can sometimes learn a lot about a continuous parallel process by embedding a discrete serial process into it, even though you couldn’t guess which serial process to embed without referring to the parallel process.

Keywords

Equilibrium Point Pattern Formation Decision Scheme Decision Boundary Sustained Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Darwin, C. (1859) On the Origin of Species (London).Google Scholar
  2. 2.
    Grossberg, S. (1970) J. Theor. Biol. 27, 291–337.CrossRefGoogle Scholar
  3. 3.
    Grossberg, S. (1973) Stud. Appl. Math. 52, 217–257.Google Scholar
  4. 4.
    Grossberg, S. (1977) J. Math. Biol. 4, 237–256.CrossRefGoogle Scholar
  5. 5.
    Grossberg, S. (1978) in Progress in Theoretical Biology, eds. Rosen, R. & Snell, F. ( Academic, New York ), pp. 183–232.Google Scholar
  6. 6.
    Smale, S. (1976) J. Math. Biol. 3, 5–7.CrossRefGoogle Scholar
  7. 7.
    Eigen, M. & Schuster, P. (1978) Naturwissenschaften 65, 7–41.CrossRefGoogle Scholar
  8. 8.
    Grossberg, S. (1978) J. Math. Anal. Appl. 66, 470–493.CrossRefGoogle Scholar
  9. 9.
    Grossberg, S. (1978) J. Theor. Biol. 73, 101–130.CrossRefGoogle Scholar
  10. 10.
    Grossberg, S. (1980) Psychol. Rev. 87, 1–51.CrossRefGoogle Scholar
  11. 11.
    May, R. M. & Leonard, W. J. (1975) SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 29, 243–253.CrossRefGoogle Scholar
  12. 12.
    Grossberg, S. (1978) in Progress in Theoretical Biology, eds. Rosen, R. & Snell, F. ( Academic, New York ), pp. 233–374.Google Scholar
  13. 13.
    Leibniz, G. W. (1925) The Monadology and Other Philosophical Writings, translated by Latta, R. (Oxford Univ. Press, London).Google Scholar
  14. 14.
    Hodgkin, A. L. (1964) The Conduction of the Nervous Impulse (Thomas, Springfield, IL).Google Scholar
  15. 15.
    Katz, B. (1966) Nerve, Muscle, and Synapse ( McGraw-Hill, New York).Google Scholar
  16. 16.
    Grossberg, S. & Levine, D. S. (1975) J. Theor. Biol. 53, 341–380.CrossRefGoogle Scholar
  17. 17.
    Mimura, M. & Murray, J. D. (1978) J. Theor. Biol. 75, 249–262.CrossRefGoogle Scholar
  18. 18.
    Ellias, S. A. & Grossberg, S. (1975) Biol. Cybernetics 20, 69–98.CrossRefGoogle Scholar
  19. 19.
    Levine, D. S. & Grossberg, S. (1976) J. Theor. Biol. 61, 477–504.CrossRefGoogle Scholar
  20. 20.
    Kauffman, S. A., Shymko, R. M. & Trabert, K. (1978) Science 199, 259–270.CrossRefGoogle Scholar
  21. 21.
    Grossberg, S. (1969) J. Differential Equations 5, 531–563.CrossRefGoogle Scholar
  22. 22.
    Grossberg, S. (1980) Bull. Math. Biol., in press.Google Scholar
  23. 23.
    Grossberg, S. (1978) Psychol. Rev. 85, 592–596.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1982

Authors and Affiliations

  • Stephen Grossberg
    • 1
  1. 1.Department of MathematicsBoston UniversityUSA

Personalised recommendations