How Does a Brain Build a Cognitive Code?

  • Stephen Grossberg
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 70)


This article provides a self-contained introduction to my work from a recent perspective. A thought experiment is offered which analyses how a system as a whole can correct errors of hypothesis testing in a fluctuating environment when none of the system’s components, taken in isolation, even knows that an error has occurred. This theme is of general philosophical interest: How can intelligence or knowledge be ascribed to a system as a whole but not to its parts? How can an organism’s adaptive mechanisms be stable enough to resist environmental fluctuations which do not alter its behavioral success, but plastic enough to rapidly change in response to environmental demands that do alter its behavioral success? To answer such questions, we must identify the functional level on which a system’s behavioral success is defined.


Conditioned Stimulus Classical Conditioning Thought Experiment Noise Suppression Contingent Negative Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. A., Silverstein, J. W., Ritz, S. A., & Jones, R. S. Distinctive features, categorical perception, and probability learning: Some applications of a neural model. Psychological Review, 1977, 84, 413–451.CrossRefGoogle Scholar
  2. Arbib, M. A. The metaphorical brain. New York: Wiley, 1972.Google Scholar
  3. Atkinson, R. C., & Shiffrin, R. M. Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), Advances in the psychology of learning and motivation research and theory (Vol. 2 ). New York: Academic Press, 1968.Google Scholar
  4. Atkinson, R. C., & Shiffrin, R. M. The control of short-term memory. Scientific American, 1971, 225, 82–90.CrossRefGoogle Scholar
  5. Barlow, H. B., & Levick, W. R. Changes in the maintained discharge with adaptation level in the cat retina. Journal of Physiology, 1969, 202, 699–718. (a)Google Scholar
  6. Barlow, H. B., & Levick, W. R. Three factors limiting the reliable detection of light by retinal ganglion cells of the cat. Journal of Physiology, 1969, 200, 1–24. (b)Google Scholar
  7. Beck, J. Surface color perception. Ithaca, N.Y.: Cornell University Press, 1972.Google Scholar
  8. Berger, T. W., & Thompson, R. F. Limbic system interrelations: Functional division among hippocampal-septal connections. Science, 1977, 197, 587–589.CrossRefGoogle Scholar
  9. Blakemore, C., & Cooper, G. F. Development of the brain depends on the visual environment. Nature, 1970, 228, 477–478.CrossRefGoogle Scholar
  10. Bloomfield, T. M. Behavioral contrast and the peak shift. In R. M. Gilbert & N. S. Sutherland (Eds.), Animal discrimination learning. New York: Academic Press, 1969.Google Scholar
  11. Boring, E. G. A history of experimental psychology ( 2nd ed. ). New York: Appleton-Century-Crofts, 1950.Google Scholar
  12. Brown, J. L. Afterimages. In C. H. Graham (Ed.), Vision and visual perception. New York: Wiley, 1965.Google Scholar
  13. Campbell, B. A. Interaction of aversive stimuli: Summation or inhibition? Journal of Experimental Psychology, 1968, 78, 181–190.CrossRefGoogle Scholar
  14. Campbell, B. A., & Kraeling, D. Response strength as a function of drive level and amount of drive reduction. Journal of Experimental Psychology, 1953, 45, 97–101.CrossRefGoogle Scholar
  15. Campbell, F. W., & Howell, E. R. Monocular alternation: A method for the investigation of pattern vision. Journal of Physiology, 1972, 225, 19–21.Google Scholar
  16. Campbell, L., & Garnett, W. The life of James Clerk Maxwell. London: Macmillan, 1882.Google Scholar
  17. Cant, B. R., & Bickford, R. G. The effect of motivation on the contingent negative variation (CNV). Electroencephalography and Clinical Neurophysiology, 1967, 23, 594.Google Scholar
  18. Carterette, E. C., & Friedman, M. P. (Eds.). Handbook of perception: Seeing (Vol. 5 ). New York: Academic Press, 1975.Google Scholar
  19. Chapman, R. M., McCrary, J. W., & Chapman, J. A. Short-term memory: The “storage” component of human brain response predicts recall. Science, 1978, 202, 1211–1214.CrossRefGoogle Scholar
  20. Cohen, J. Very slow brain potentials relating to expectancy: The CNV. In E. Donchin & D. B. Lindsley (Eds.), Average evoked potentials. Washington, D.C.: National Aeronautics and Space Administration, 1969.Google Scholar
  21. Cornsweet, T. N. Visual perception. New York: Academic Press, 1970.Google Scholar
  22. Craik, F. I. M. & Lockhart, R. S. Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 1972, 11, 671–684.CrossRefGoogle Scholar
  23. Craik, F. I. M., & Tulving, E. Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 1975, 104, 268–294.CrossRefGoogle Scholar
  24. Creutzfeldt, O. D., & Northdurft, H. C. Representation of complex visual stimuli in the brain. Naturwissenschaften, 1978, 65, 307–318.CrossRefGoogle Scholar
  25. Daniels, J. D., & Pettigrew, J. D. Development of neuronal responses in the visual system of cats. In G. Gottlieb (Ed.), Neural and behavioral specificity (Vol. 3 ). New York: Academic Press, 1976.Google Scholar
  26. Denny, M. R. Relaxation theory and experiments. In F. R. Brush (Ed.), Aversive conditioning and learning. Academic Press: New York, 1970.Google Scholar
  27. Dickinson, A., Hall, G., & Mackintosh, N. J. Surprise and the attenuation of blocking. Journal of Experimental Psychology: Animal Behavior Processes, 1976, 4, 313–322.CrossRefGoogle Scholar
  28. Donchin, E., Gerbrandt, L. A., Leifer, L., & Tucker, L. Is the contingent negative variation contingent on a motor response? Psychophysiology, 1972, 9, 178–188.CrossRefGoogle Scholar
  29. Donchin, E., Tueting, P., Ritter, W., Kutas, M., & Heffley, E. Electroencephalography and Clinical Neurophysiology, 1975, 38, 1–13.CrossRefGoogle Scholar
  30. Duda, R. O., & Hart, P. E. Pattern classification and scene analysis. New York: Wiley, 1973.Google Scholar
  31. Dunham, P. J. Punishment: Method and theory. Psychological Review, 1971, 78, 58–70.CrossRefGoogle Scholar
  32. Ellias, S. A., & Grossberg, S. Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks. Biological Cybernetics, 1975, 20, 69–98.CrossRefGoogle Scholar
  33. Estes, W. K. Outline of a theory of punishment. In B. A. Campbell & R. M. Church (Eds.), Punishment and aversive behavior. New York: Appleton-Century-Crofts, 1969.Google Scholar
  34. Estes, W. K., & Skinner, B. F. Some quantitative properties of anxiety. Journal of Experimental Psychology, 1941, 29, 390–400.CrossRefGoogle Scholar
  35. Fender, D., & Julesz, B. Extension of Panum’s fusional area in binocularly stabilized vision. Journal of the Optical Society of America, 1967, 57, 819–830.CrossRefGoogle Scholar
  36. Foote, W. E., Manciewicz, R. J., & Mordes, J. P. Effect of midbrain raphe and lateral mesencephalic stimulation on spontaneous and evoked activity in the lateral geniculate of the cat. Experimental Brain Research, 1974, 19, 124–130.CrossRefGoogle Scholar
  37. Freeman, W. J. Mass action in the nervous system. New York: Academic Press, 1975.Google Scholar
  38. Fukuda, Y., & Stone, J. Retinal distribution and central projections of X-, Y-, and W-cells of the cat’s retina. Journal of Neurophysiology, 1974, 37, 749–772.Google Scholar
  39. Fuxe, K., Hökfelt, T., & Ungerstedt, U. Morphological and functional aspects of central monoamine neurons. International Review of Neurobiology, 1970, 13, 93–126.CrossRefGoogle Scholar
  40. Fuxe, K., & Ungerstedt, U. Histochemical, biochemical, and functional studies on central monoamine neurons after acute and chronic amphetamine administration. In E. Costa & S. Garattini (Eds.), Amphetamines and related compounds. New York: Raven Press, 1970.Google Scholar
  41. Gardner, W. J., Licklider, J. C. R., & Weisz, A. Z. Suppression of pain by sound. Science, 1961, 132, 32–33.CrossRefGoogle Scholar
  42. Gazzaniga, M. S. The bisected brain. New York: Appleton-Century-Crofts, 1970.Google Scholar
  43. Gibson, J. J. Adaptation with negative aftereffect. Psychological Review, 1937, 44, 222–244.CrossRefGoogle Scholar
  44. Graham, C. H. Visual form perception. In C. H. Graham (Ed.), Vision and visual perception. New York: Wiley, 1965.Google Scholar
  45. Grossberg, S. The theory of embedding fields with applications to psychology and neurophysiology. New York: Rockefeller Institute for Medical Research, 1964.Google Scholar
  46. Grossberg, S. On learning and energy-entropy dependence in recurrent and nonrecurrent signed networks. Journal of Statistical Physics, 1969, 1, 319–350. (a)CrossRefGoogle Scholar
  47. Grossberg, S. On the serial learning of lists. Mathematical Biosciences, 1969, 4, 201–253. (b)CrossRefGoogle Scholar
  48. Grossberg, S. On the production and release of chemical transmitters and related topics in cellular control. Journal of Theoretical Biology, 1969, 22, 325–364. (c)CrossRefGoogle Scholar
  49. Grossberg, S. Neural pattern discrimination. Journal of Theoretical Biology, 1970, 27, 291–337.CrossRefGoogle Scholar
  50. Grossberg, S. On the dynamics of operant conditioning. Journal of Theoretical Biology, 1971, 33, 225–255. (a)CrossRefGoogle Scholar
  51. Grossberg, S. Pavlovian pattern learning by nonlinear neural networks. Proceedings of the National Academy of Sciences, 1971, 68, 828–831. (b)CrossRefGoogle Scholar
  52. Grossberg, S. Neural expectation: Cerebellar and retinal analogs of cells fired by learnable or unlearned pattern classes. Kybernetik, 1972, 10, 49–57. (a)CrossRefGoogle Scholar
  53. Grossberg, S. A neural theory of punishment and avoidance. I. Qualitative theory. Mathematical Biosciences, 1972, 15, 39–67. (b)CrossRefGoogle Scholar
  54. Grossberg, S. A neural theory of punishment and avoidance, II. Quantitative theory. Mathematical Biosciences, 1972, 15, 253–285. (c)CrossRefGoogle Scholar
  55. Grossberg, S. Pattern learning by functional-differential neural networks with arbitrary path weights. In K. Schmitt (Ed.), Delay and functional-differential equations and their applications. New York: Academic Press, 1972. (d)Google Scholar
  56. Grossberg, S. Contour enhancement, short-term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics, 1973, 52, 217–257.Google Scholar
  57. Grossberg, S. Classical and instrumental learning by neural networks. In R. Rosen & F. Snell (Eds.), Progress in theoretical biology (Vol. 3 ). New York: Academic Press, 1974.Google Scholar
  58. Grossberg, S. A neural model of attention, reinforcement, and discrimination learning. International Review of Neurobiology, 1975, 18, 263–327.CrossRefGoogle Scholar
  59. Grossberg, S. Adaptive pattern classification and universal recoding, I: Parallel development and coding of neural feature detectors. Biological Cybernetics, 1976, 23, 121–134. (a)CrossRefGoogle Scholar
  60. Grossberg, S. Adaptive pattern classification and universal recording, II: Feedback, expectation, olfaction, and illusions. Biological Cybernetics, 1976, 23, 187–202. (b)CrossRefGoogle Scholar
  61. Grossberg, S. Pattern formation by the global limits of a nonlinear competitive interaction in n dimensions. Journal of Mathematical Biology, 1977, 4, 237–256.CrossRefGoogle Scholar
  62. Grossberg, S. Behavioral contrast in short-term memory: Serial binary memory models or parallel continuous memory models? Journal of Mathematical Psychology, 1978, 17, 199–219. (a)CrossRefGoogle Scholar
  63. Grossberg, S. Communication, memory, and development. In R. Rosen & F. Snell (Eds.), Progress in theoretical biology (Vol. 5). New York: Academic Press, 1978. (b)Google Scholar
  64. Grossberg, S. Decisions, patterns, and oscillations in the dynamics of competitive systems with applications to Volterra-Lotka systems. Journal of Theoretical Biology, 1978, 73, 101–130. (c)CrossRefGoogle Scholar
  65. Grossberg, S. Do all neural models really look alike? A comment on Anderson, Silverstein, Ritz, and Jones. Psychological Review, 1978, 85, 592–596. (d)CrossRefGoogle Scholar
  66. Grossberg, S. A theory of human memory: Self-organization and performance of sensory-motor codes, maps, and plans. In R. Rosen & F. Snell (Eds.), Progress in theoretical biology (Vol. 5). New York: Academic Press, 1978. (e)Google Scholar
  67. Grossberg, S., & Levine, D. S. Some developmental and attentional biases in the contrast enhancement and short term memory of recurrent neural networks. Journal of Theoretical Biology, 1975, 53, 341–380.CrossRefGoogle Scholar
  68. Grossberg, S., and Pepe, J. Schizophrenia: Possible dependence of associational span, bowing, and primacy vs. recency on spiking threshold. Behavioral Science, 1970, 15, 359–362.CrossRefGoogle Scholar
  69. Grossberg, S., & Pepe, J. Spiking threshold and over-arousal effects on serial learning. Journal of Statistical Physics, 1971, 3, 95–125.CrossRefGoogle Scholar
  70. Hebb, D. O. Drives and the CNS (conceptual nervous system). Psychological Review, 1955, 62, 243–254.CrossRefGoogle Scholar
  71. Helmholtz, H. von. Handbuch der physiologischen optik (1st. ed.). Hamburg, Leipzig: Voss, 1866.Google Scholar
  72. Helmholtz, H. von. Physiological optics (Vol. 2 ) ( J. P. C. Southall, Ed.). New York: Dover, 1962.Google Scholar
  73. Hilgard, E. R., & Bower, G. H. Theories of learning ( 4th ed. ). Englewood Cliffs, N.J.: Prentice-Hall, 1975.Google Scholar
  74. Hirsch, H. V. B., & Spinelli, D. N. Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science, 1970, 168, 869–871.CrossRefGoogle Scholar
  75. Hubel, D. H., & Wiesel, T. N. Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London (B), 1977, 198, 1–59.CrossRefGoogle Scholar
  76. Irwin, F. W. Intentional behavior and motivation: A cognitive theory. Philadelphia, Pa.: Lippincott, 1971.Google Scholar
  77. Irwin, D. A., Rebert, C. S., McAdam, D. W., & Knott, J. R. Slow potential change (CNV) in the human EEG as a function of motivational variables. Electroencephalography and Clinical Neurophysiology, 1966, 21, 412–413.CrossRefGoogle Scholar
  78. Jacobowitz, D. M. Effects of 6-hydroxydopa. In E. Usdin & H. S. Snyder (Eds.), Frontiers in catecholamine research. New York: Pergamon Press, 1973.Google Scholar
  79. Juhasz, A. Über die komplementärge-färbten nachbilder. Zeitschrift fur Psychologie, 1920, 51, 233–263.Google Scholar
  80. Julesz, B. Foundations of cyclopean perception. Chicago: University of Chicago Press, 1971.Google Scholar
  81. Kamin, L. J. Predictability, surprise, attention, and conditioning. In B. A. Campbell & R. M. Church (Ed.), Punishment and aversive behavior. New York: Appleton-Century-Crofts, 1969.Google Scholar
  82. Koenigsberger, L. Hermann von Helmholtz. (F. A. Welby, trans.). Oxford, England: Clarendon, 1906.Google Scholar
  83. Ladisich, W., Volbehr, H., & Matussek, N. Paradoxical effect of amphetamine on hyperactive states in correlation with catecholamine metabolism in brain. In E. Costa & S. Garattini (Eds.), Amphetamines and related compounds. New York: Raven Press, 1970.Google Scholar
  84. Land, E. H. The retinex theory of color vision. Scientific American, 1977, 237, 108–128.CrossRefGoogle Scholar
  85. Levine, D. S., & Grossberg, S. Visual illusions in neural networks: Line neutralization, tilt aftereffect, and angle expansion. Journal of Theoretical Biology, 1976, 61, 477–504.CrossRefGoogle Scholar
  86. Lindvall, O., & Björklund, A. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiologia Scandinavia Supplement, 1974, 412, 1–48.Google Scholar
  87. Low, M. D., Borda, R. P., Frost, J. D., & Kellaway, P. Surface negative slow potential shift associated with conditioning in man. Neurology, 1966, 16, 711–782.Google Scholar
  88. Lynn, R. Attention, arousal, and the orientation reaction. New York: Pergamon Press, 1966.Google Scholar
  89. Macchi, G., & Rinvik, E. Thalamo-telencephalic circuits: A neuroanatomical survey. In A. Rémond (Ed.), Handbook of electroencephalography and clinical neurophysiology (Vol. 2, Pt. A). Amsterdam: Elsevier, 1976.Google Scholar
  90. MacKay, D. M. Moving visual images produced by regular stationary patterns. Nature, 1957, 180, 849–850.CrossRefGoogle Scholar
  91. MacKay, D. M., & MacKay, V. What causes decay of pattern-contingent chromatic aftereffects? Vision Research, 1975, 15, 462–464.CrossRefGoogle Scholar
  92. Masterson, F. A. Is termination of a warning signal an effective reward for the rat? Journal of Comparative and Physiological Psychology, 1970, 72, 471–475.CrossRefGoogle Scholar
  93. McAdam, D. W. Increases in CNS excitability during negative cortical slow potentials in man. Electro-encephalography and Clinical Neurophysiology, 1969, 26, 216–219.CrossRefGoogle Scholar
  94. McAdam, D. W., Irwin, D. A., Rebert, C. S., & Knott, J. R. Conative control of the contingent negative variation. Electroencephalography and Clinical Neurophysiology, 1966, 21, 194–195.CrossRefGoogle Scholar
  95. McAllister, W. R., & McAllister, D. E. Behavioral measurement of conditioned fear. In F. R. Brush (Ed.), Aversive conditioning and learning. New York: Academic Press, 1970.Google Scholar
  96. McCollough, C. Color adaptation of edge-detectors in the human visual system. Science, 1965, 149, 1115–1116.CrossRefGoogle Scholar
  97. Montalvo, F. S. A neural network model of the McCollough effect. Biological Cybernetics, 1976, 25, 49–56.Google Scholar
  98. Moruzzi, G., & Magoun, H. W. Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology, 1949, 1, 455–473.Google Scholar
  99. Myers, A. K. Effects of continuous loud noise during instrumental shock-escape conditioning. Journal of Comparative and Physiological Psychology, 1969, 68, 617–622.CrossRefGoogle Scholar
  100. Piaget, J. The origins of intelligence in children. New York: Norton, 1963.Google Scholar
  101. Ratliff, F. Mach bands: Quantitative studies of neural networks in the retina. San Francisco: Holden-Day, 1965.Google Scholar
  102. Rauschecker, J. P. J., Campbell, F. W., & Atkinson, J. Colour opponent neurones in the human visual system. Nature, 1973, 245, 42–45.CrossRefGoogle Scholar
  103. Remington, R. J. Analysis of sequential effects in choice reaction times. Journal of Experimental Psychology, 1969, 2, 250–257.CrossRefGoogle Scholar
  104. Rescorla, R. A., & Wagner, A. R. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. Black & W. F. Prokasy (Eds.), Classical conditioning II. New York: Appleton-Century-Crofts, 1972.Google Scholar
  105. Ricklan, M. L-dopa and parkinsonism: A psychological assessment. Springfield, I11.: Charles C Thomas, 1973.Google Scholar
  106. Robson, J. G. Receptive fields: Neural representation of the spatial and intensive attributes of the visual image. In E. C. Carterette & M. P. Friedman (Eds.), Handbook of perception (Vol. 5 ). New York: Academic Press, 1976.Google Scholar
  107. Rohrbaugh, J., Donchin, E., & Eriksen, C. Decision making and the P300 component of the cortical evoked response. Perception & Psychophysics, 1974, 15, 368–374.CrossRefGoogle Scholar
  108. Schiller, P. H., & Malpeli, J. G. Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. Journal of Neurophysiology, 1978, 41, 788–797.Google Scholar
  109. Schneider, W., & Shiffrin, R. M. Automatic and controlled information processing in vision. In D. LaBarge & S. J. Samuels (Eds.), Basic processes in reading: Perception and comprehension. Hillsdale, N.J.: Erlbaum, 1976.Google Scholar
  110. Seligman, M. E. P., Maier, S. F., & Solomon, R. L. Unpredictable and uncontrollable aversive events. In F. R. Brush (Ed.), Aversive conditioning and learning. New York: Academic Press, 1971.Google Scholar
  111. Singer, W. Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. Physiological Review, 1977, 57, 386–420.Google Scholar
  112. Sluckin, W. Imprinting and early learning. London: Methuen, 1964.Google Scholar
  113. Squires, K., Wickens, C., Squires, N., & Donchin, E. The effect of stimulus sequence on the waveform of the cortical event-related potential. Science, 1976, 193, 1142–1146.CrossRefGoogle Scholar
  114. Stein, L. Norepinephrine reward pathways: Role in self-stimulation, memory consolidation, and schizophrenia. In J. K. Cole & T. B. Sonderegger (Eds.), Nebraska Symposium on Motivation (Vol. 22 ). Lincoln: University of Nebraska Press, 1974.Google Scholar
  115. Stryker, M., & Sherk, H. Modification of cortical orientation selectivity in the cat by restricted visual experience: A reexamination. Science, 1975, 190, 904–905.CrossRefGoogle Scholar
  116. Tanji, J., & Evarts, E. V. Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. Journal of Neurophysiology, 1976, 39, 1062–1068.Google Scholar
  117. Thomas, G. B., Jr. Calculus and analytic geometry. Reading, Mass.: Addison-Wesley, 1968.Google Scholar
  118. Trabasso, T., & Bower, G. H. Attention in learning: Theory and research. New York: Wiley, 1968.Google Scholar
  119. Tsumoto, T., Creutzfeldt, O. D., & Legéndy, C. R. Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat. Experimental Brain Research, 1978, 32, 345–364.CrossRefGoogle Scholar
  120. Tsumoto, T., & Suzuki, D. A. Effects of frontal eye field stimulation upon activities of the lateral geniculate body of the cat. Experimental Brain Research, 1976, 25, 291–306.CrossRefGoogle Scholar
  121. Ungerstedt, U. Stereo toxic mapping of the monoamine pathways in the rat brain. Acta Physiologica Scandinavia, 1971, 82 (Supplement 367), 1–48.Google Scholar
  122. Wagner, A. R. Frustrative nonreward: A variety of punishment. In B. A. Campbell & R. M. Church (Eds.), Punishment and aversive behavior. New York: Appleton-Century-Crofts, 1969.Google Scholar
  123. Walter, W. G. Slow potential waves in the human brain associated with expectancy, attention, and decision. Arch. Psychiat. Nervenkr., 1964, 206, 309–322.CrossRefGoogle Scholar
  124. Wilson, H. A synaptic model for spatial frequency adaptation. Journal of Theoretical Biology, 1975, 50, 327–352.CrossRefGoogle Scholar
  125. Wurtz, R. H., & Goldberg, M. E. The role of the superior colliculus in visually evoked eye movement. In J. Dichgans & E. Bizzi (Eds.), Cerebral control of eye movement and motion perception. Basel, Switzerland: Karger, 1972.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1982

Authors and Affiliations

  • Stephen Grossberg
    • 1
  1. 1.Department of MathematicsBoston UniversityUSA

Personalised recommendations