Skip to main content

Part of the book series: Current Topics in Veterinary Medicine and Animal Science ((CTVM,volume 16))

Abstract

Histological and histochemical aspects of genetic muscle hypertrophy due to muscle fibre hyperplasia in cattle are considered in the context of muscle fibre growth and metabolism in other meat animals. Two types of muscle enlargement are considered, ontogenetic (during development of the individual animal) and phylogenetic (in the evolution of phenotypes due to selective breeding). Phylogenetic muscle enlargement is shown to occur by an extension of ontogenetic processes. Ontogenetic muscle enlargement occurs by prenatal increases in muscle fibre numbers and by pre- and post-natal radial and longitudinal growth of muscle fibres; the relative contribution of these cellular growth processes to muscle weight depends on muscle architecture. Factors which regulate muscle fibre numbers and diameters also interact with the factors, probably neurogenic, which regulate the functionally-related metabolic differentiation between muscle fibres. Metabolic differentiation causes cellular heterogeneity in the conversion of muscle to meat.

Résumé

Les aspects histologiques et histochimiques de l’hypertrophie musculaire d’origine génétique, conséquence de l’hyperplasie des fibres musculaires, sont examinés au regard de la croissance et du métabolisme des fibres musculaires des autres animaux à viande. Deux types de croissance du muscle sont étudiés, selon l’ontogénèse (croissance durant le développement d’un individu donné) ou la phylogénèse (croissance lors de l’évolution phénotypique due à la sélection). La croissance du muscle considérée d’un point de vue phylogénique est montrée comme étant une extension des processus de croissance considérés du point de vue ontogénique. La croissance du muscle du point de vue ontogénique résulte d’un accroissement du nombre de fibres musculaires avant la naissance et d’une croissance radiale et longitudinale des fibres musculaires avant et après la naissance; la contribution relative de ces différents processus de croissance cellulaire à l’augmentation du poids du muscle, depend de l’architecture du muscle. Les facteurs qui contôdlent les nombres et diamètres des fibres musculaires, interfêrent avec les facteurs, probablement d’origine neurologique, qui contrôlent la différenciation métabolique fonctionnelle entre les fibres musculaires. La différenciation métabolique provoque une hétérogénéité cellulaire au cours de la transformation du muscle en viande.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashmore, C.R., Parker, W., Stokes, H. and Doerr, L., 1974. Comparative aspects of muscle fiber types in fetuses of the normal and ‘double muscled’ cattle. Growth, 38, 501–506.

    Google Scholar 

  • Ashmore, C.R. and Robinson, D.W., 1969. Hereditary muscular hypertrophy in the bovine. I. Histological and biochemical characterization. Proc. Soc. exp. Biol. Med. 132, 548–554.

    PubMed  CAS  Google Scholar 

  • Ashmore, C.R., Tompkins, G. and Doerr, L., 1972. Postnatal development of muscle fiber types in domestic animals. J. Anim. Sci., 34, 37–41.

    PubMed  CAS  Google Scholar 

  • Beerman, D.H., Cassens, R.G. and Hausman, G.J., 1978. A second look at fiber type differentiation in porcine skeletal muscle. J. Anim. Sci. 46, 125–132.

    Google Scholar 

  • Bendall, J.R., 1973. Post mortem changes in muscle. In: Bourne, G.H. The Structure and Function of Muscle, Vol. 2, Part 2, 244–309, Academic Press, New York.

    Google Scholar 

  • Bendall, J.R., 1980. The electrical stimulation of carcasses of meat animals. In: Lawrie, R., Developments in Meat Science, 1, 37–59. Applied Science Publishers Ltd, London.

    Google Scholar 

  • Bendall, J.R. and Taylor, A.A., 1970. The Meyerhof quotient and the synthesis of glycogen from lactate in frog and rabbit muscle. Biochem. J., 118, 887–893.

    PubMed  CAS  Google Scholar 

  • Bendall, J.R. and Voyle, C.A., 1967. A study of the histological changes in the growing muscles of beef animals. J. Food Technol., 2, 259–83.

    Article  Google Scholar 

  • Campion, D.R., Richardson, R.L., Kraeling, R.R. and Reagan, J.O., 1979. Changes in the satellite cell population of fetal pig skeletal muscle. J. Anim. Sci., 48, 1109–1115.

    PubMed  CAS  Google Scholar 

  • Connett, R.J., 1979. Glyconeogenesis from lactate in frog striated muscle. Am. J. Physiol., 237 (5), C231 - C236.

    PubMed  CAS  Google Scholar 

  • Cooper, C.C., Cassens, R.G. and Briskey, E.J., 1969. Capillary distribution and fiber characteristics in skeletal muscle of stress-susceptible animals. J. Food Sci., 34, 299–302.

    Article  Google Scholar 

  • Dahlin, K.J., Allen, C.E., Benson, E.S. and Hegarty, P.V.J., 1976. Ultra-structural differences induced by heat in red and white avian muscles in rigor mortis. J. Ultrastruct. Res., 56, 96–106.

    Article  PubMed  CAS  Google Scholar 

  • Davies, A.S., 1972. Postnatal changes in the histochemical fibre types of porcine skeletal muscle. J. Anat., 113, 213–40.

    PubMed  CAS  Google Scholar 

  • Dennis, S.M., 1972. Congenital muscular hyperplasia in a lamb. Cornell Vet., 57, 263–268.

    Google Scholar 

  • Dildey, D.D., Aberle, E.D., Forrest, J.C. and Judge, M.D., 1970. Porcine muscularity and properties associated with pale, soft, exudative muscle. J. Anim. Sci., 31, 681–85.

    Google Scholar 

  • Everitt, G.C., 1968. Prenatal development of uniparous animals with particular reference to the influence of maternal nutrition in sheep. In: Lodge, G.A. and Lamming, G.E., Growth and Development of Mammals, 131–157, Butterworths, London.

    Google Scholar 

  • Goldspink, G., 1970. Morphological adaptation due to growth and activity. In: Briskey, E.J., Cassens, R.G. and Marsh, B.B. The Physiology and Biochemistry of Muscle as a Food, 2, 521–533, University of Wisconsin Press, Madison.

    Google Scholar 

  • Gross, S.R. and Mayer, S.E., 1974. Regulation of phosphorylase b to a conversion in muscle. Life Sci., 14, 401–14.

    Article  PubMed  CAS  Google Scholar 

  • Hamm, R., 1972. Kolloidalchemie des Fleisches das Wasserbindungsvermögen des Muskel eiweisses in Theorie und Praxis. Paul Parey, Berlin.

    Google Scholar 

  • Hammond, J., 1932. Growth and Development of Mutton Qualities in the Sheep. Oliver and Boyd, Edinburgh and London.

    Google Scholar 

  • Heffron, J.J.A. and Hegarty, P.V.J., 1974. Evidence for a relationship between ATP hydrolysis and changes in the extracellular space and fibre diameter during rigor development in skeletal muscle. Comp. Biochem. Physiol., 49A, 43–56.

    Article  Google Scholar 

  • Hegarty, P.V.J., Gundlach, L.C. and Allen, C.E., 1973. Comparative growth of porcine skeletal muscles using an indirect prediction of muscle fiber number. Growth, 37, 333–44.

    PubMed  CAS  Google Scholar 

  • Helmi, C. and Cracraft, J., 1977. The growth patterns of three hindlimb muscles in the chicken. J. Anat., 123, 615–635.

    PubMed  CAS  Google Scholar 

  • Holmes, J.H.G. and Ashmore, C.R., 1972. A histochemical study of development of muscle fiber type and size in normal and ‘double muscled’ cattle. Growth, 36, 351–372.

    PubMed  CAS  Google Scholar 

  • Johnston, D.M., Stewart, D.F., Moody, W.G., Boling, J. and Kemp, J.D., 1975. Effect of breed and time on feed on the size and distribution of beef muscle fiber types. J. Anim. Sci., 40, 613–20.

    Google Scholar 

  • Joubert, D., 1956a. An analysis of factors influencing post-natal growth and development of the muscle fibre. J. agric. Sci., Camb., 47, 59–102.

    Article  Google Scholar 

  • Joubert, D., 1956b. Relation between body size and muscle fibre diameter in the newborn lamb. J. agric. Sci., Camb., 47, 449–455.

    Article  Google Scholar 

  • Kikuchi, T., 1971. Studies on development and differentiation of muscle. III. Especially on the mode of increase in the number of muscle cells. Tohoku J. agric. Res., 22, 1–15.

    Google Scholar 

  • Kraeling, R.R. and Rampacek, G.B., 1977. Induction of a pale, soft, exudative myopathy and sudden death in pigs by injection of anterior pituitary extract. J. Anim. Sci., 45, 71–80.

    PubMed  CAS  Google Scholar 

  • Livingston, D.M.S., Blair, R. and English, P.R., 1966. The usefulness of muscle fibre diameter in studies of the lean meat content of pigs. Anim. Prod., 8, 267–274.

    Article  Google Scholar 

  • Ludvigsen, J., 1954. Undersogelser over den sakaldte ‘muskeldegeneration’ hos svin. Beretn. Forsogslab., Kobenhavn, 272.

    Google Scholar 

  • Mackeller, J.C., 1968. Muscular hypertrophy in South Devon cattle. Fellowship Thesis, Royal College of Veterinary Surgeons, London.

    Google Scholar 

  • Marple, D.N. and Cassens, R.G., 1973. A mechanism for stress-susceptibility in swine. J. Anim. Sci., 37, 546–550.

    PubMed  CAS  Google Scholar 

  • Marple, D.N., Nachreiner, R.F., McGuire, J.A. and Squires, C.D., 1975. Thyroid function and muscle glycolysis in swine. J. Anim. Sci., 41, 799–803.

    CAS  Google Scholar 

  • Meara, P.J., 1947. Meat studies No. 1. Post-natal growth and development of muscle, as exemplified by the gastrocnemius and psoas muscles of the rabbit. Onderstepoort J. Vetvet. Sci., 21, 329–466.

    CAS  Google Scholar 

  • Melichna, J., Gutmann, E. and Syrovy, I., 1974. Developmental changes in contraction properties, adenosine-triphosphatase activity and muscle fibre pattern of fast and slow chicken muscle. Physiol, bohemoslov., 23, 511–520.

    CAS  Google Scholar 

  • Merkel, R.A., 1971. The relationship of some cardiovascular and haemato-logical parameters to porcine muscle quality. Proc. 2nd Int. Symp. Condition Meat Quality Pigs, Zeist, Pudoc, Wageningen, 97–103.

    Google Scholar 

  • Muir, A.R., 1961. Observations on the attachment of myofibrils to the sarcolemma at the muscle-tendon junction. In: Boyd, J.D., Johnson, F.R. and Lever, J.D., Electron Microscopy in Anatomy, Edward Arnold, London.

    Google Scholar 

  • Mullen, K. and Swatland, H.J., 1979. Linear skeletal growth in male and female turkeys. Growth, 43, 151–159.

    PubMed  CAS  Google Scholar 

  • Naerland, G., 1940. Forekommer dobbeltlend-erkarakteren hos andre husdyrarter enn storfe? Universell hyperplasi av stammens og lemmenes muskulatur hos sau. Skand. Vet-Tidskr., 30, 811–830.

    Google Scholar 

  • Nelson, T.E., Jones, E.W., Henrickson, R.L., Falk, S.N. and Kerr, D.D., 1974. Porcine malignant hyperthermia: observations on the occurrence of pale, soft, exudative musculature among susceptible pigs. Am. J. Vet. Res., 35, 347–350.

    PubMed  CAS  Google Scholar 

  • Newbold, R.P. and Scopes, R.K., 1967. Post mortem glycolysis in ox skeletal muscle. Effect of temperature on the concentration of glycolytic intermediates and cofactors. Biochem. J., 105, 127–36.

    PubMed  CAS  Google Scholar 

  • Nostvold, O., Schie, K.A. and Froystein, T., 1979. Muscle fiber characteristics in lines of pigs selected for rate of gain and backfat thickness. Acta Agric. Scand. Suppl., 21, 136–142.

    Google Scholar 

  • Penny, I.F., 1980. The enzymology of conditioning. In: Lawrie, R., Developments in Meat Science, 1, 115–143, Applied Science Publishers Ltd., London.

    Google Scholar 

  • Sair, R.A., Kastenschmidt, L.L., Cassens, R.G. and Briskey, E.J., 1972. Metabolism and histochemistry of skeletal muscle from stress-susceptible pigs. J. Food Sci., 37, 659–663.

    Article  CAS  Google Scholar 

  • Sair, R.A., Lister, D., Moody, W.G., Cassens, R.G., Hoekstra, W.G. and Briskey, E.J., 1970. Action of curare and magnesium on striated muscle of stress-susceptible pigs. Am. J. Physiol., 218, 108–114.

    PubMed  CAS  Google Scholar 

  • Smith, J.H., 1963. Relation of body size to muscle cell size and number in the chicken. Poult. Sci., 42, 283–290.

    Google Scholar 

  • Staun, H., 1963. Various factors affecting number and size of muscle fibers in the pig. Acta Agric. Scand., 13, 293–322.

    Article  Google Scholar 

  • Staun, H., 1972. The nutritional and genetic influence on number and size of muscle fibres and their response to carcass quality in pigs. Wld. Rev. Anim. Prod., 8 (3), 18–26.

    Google Scholar 

  • Stickland, N.C. and Goldspink, G., 1973. A possible predictor muscle for the fibre content and growth characteristics of porcine muscle. Anim. Prod., 16, 135–146.

    Article  Google Scholar 

  • Stickland, N.C., Goldspink, G., 1975. A note on porcine skeletal muscle parameters and their possible use in early progeny testing. Anim. Prod., 21, 93–96.

    Article  Google Scholar 

  • Swatland, H.J., 1971. Morphology of the motor innervation of muscle. Proc. Recip. Meat Conf., 24, 400–417.

    Google Scholar 

  • Swatland, H.J., 1973a. Innervation of genetically enlarged muscles from double muscled cattle. J. Anim. Sci., 36, 355–362.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1973b. Muscle growth in the fetal and neonatal pig. J. Anim. Sci., 37, 536–545.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1974a. Developmental disorders of skeletal muscle in cattle, pigs and sheep. Vet. Bull., 44, 179–202.

    Google Scholar 

  • Swatland, H.J., 1974b. The number of fibres in a muscle. Bull. Inst. Meat., 84, 12–16.

    Google Scholar 

  • Swatland, H.J., 1975a. Histochemical development of myofibres in neonatal piglets. Res. Vet. Sci., 18, 253–257.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1975b. Growth of motor end plates and histochemistry of intrafusal myofibres in neonatal piglets. Res. Vet. Sci., 18, 258–262.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1975c. Myofibre number and myofibrillar development in neonatal pigs. Zbl. Vet. Med. A., 22, 756–763.

    CAS  Google Scholar 

  • Swatland, H.J., 1975d. Effect of fascicular arrangement on the apparent number of myofibers in the porcine Longissimus muscle. J. Anim. Sci. 41, 794–798.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1975e. Survival time of intact neuromuscular pathways in slaughtered pigs. Can. Inst. Food Sci. Technol. J., 8, 122–123.

    Google Scholar 

  • Swatland, H.J., 1975f. Relationships between mitochondrial content of muscle fibres and patterns of glycogen depletion post mortem. Histochem. J., 7, 367–374.

    Article  PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1975g. Relationships between mitochondrial content and glycogen distribution in porcine muscle fibres. Histochem. J., 7, 459–469.

    Article  PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1976a. Longitudinal fascicular growth in the porcine Longissimus muscle. J. Anim. Sci., 42, 63–66.

    Google Scholar 

  • Swatland, H.J., 1976b. Proliferation of myofibrils in the porcine Longissimus muscle. J. Anim. Sci., 42, 1434–1439.

    Google Scholar 

  • Swatland, H.J., 1976c. Electromyography of electrically stunned pigs and excised bovine muscle. J. Arim. Sci., 42, 838–844.

    Google Scholar 

  • Swatland, H.J., 1976d. Cellular patterns of post mortem glycogenolysis in Longissimus dorsi muscles of pigs at different live weights. Histochem. J., 8, 455–461.

    Article  PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1976e. Motor unit activity in excised pre-rigor beef muscle. Can. Inst. Food Sci. Technol. J., 9, 177–181.

    Google Scholar 

  • Swatland, H.J., 1976f. An electrocorticographic study of necrobiosis in the brains of electrically stunned and exsanguinated pigs. J. Anim. Sci., 43, 577–582.

    Google Scholar 

  • Swatland, H.J., 1976g. Effect of growth and plane of nutrition on apparent muscle fibre numbers in the pig. Growth, 40, 285–292.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1976h. Recent research on muscle development in swine. Proc. Recip. Meat Conf., 29, 86–104.

    Google Scholar 

  • Swatland, H.J., 1977a. Histochemical changes during muscle growth in pigs. Zbl. Vet. Med. A., 24, 248–251.

    CAS  Google Scholar 

  • Swatland, H.J., 1977b. Cytophotometry of post mortem glycogenolysis in different histochemical types of muscle fibres of the pig. Histochem. J., 9, 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1977c. Accumulation of myofiber nuclei in pigs with normal and arrested development. J. Anim. Sci., 44, 759–764.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1977d. Transitional stages in the histochemical development of muscle fibres during post-natal growth. Histochem. J., 9, 751–757.

    Article  PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1977e. Sensitivity of pre-rigor beef muscle to electrical stimulation. Can. Inst. Food Sci. Technol. J., 10, 280–283.

    Google Scholar 

  • Swatland, H.J., 1978a. Glycogen phosphorylase and branching enzyme activity in red and white myofibers of bovine Sternormandibularis muscle. J. Anim. Sci., 46, 113–117.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1978b. Longitudinal growth and rate of new sarcomere formation in porcine muscle. J. Anim. Sci., 46, 118–124.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1978c. Comparison of red and white muscles by cytophotometry of their muscle fibre populations. Histochem. J., 10, 349–360.

    Article  PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1978d. Histochemical distribution of cytochromes in pork. Can. J. Anim. Sci., 58, 427–434.

    Article  CAS  Google Scholar 

  • Swatland, H.J., 1978e. A note of the physiological development of a red muscle from the ham region of the pork carcass. Anim. Prod., 27, 229–231.

    Article  Google Scholar 

  • Swatland, H.J., 1979a. Allometric radial growth in muscle, comparing fibres with strong and with weak adenosine triphosphatase activity. J. Anat., 129, 591–596.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1979b. Differential growth in the Sartorius muscles of male and female turkeys. Zbl. Vet. Med. A., 26, 159–164.

    CAS  Google Scholar 

  • Swatland, H.J., 1979c. Differential growth in the Supracoracoideus muscles of male and female turkeys. Zbl. Vet. Med. C., 8, 227–232.

    CAS  Google Scholar 

  • Swatland, H.J., 1979d. Low temperature activation of post mortem glyco-genolysis in bovine skeletal muscle fibres. Histochem. J., 11, 391–398.

    Article  PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1979e„ Endomysial boundary scanning as a method of counting skeletal muscle fibres. Mikroskopie, 35, 280–288.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1979f. A method for myoglobin in cryostat sections of muscle by precipitation with sulfosalicylic acid. Stain. Tech., 54, 245–249.

    CAS  Google Scholar 

  • Swatland, H.J., 1980a. Cytophotometry of post mortem glycogenolysis in quiescent bovine muscle fibres in relation to temperature, succinate dehydrogenase activity and adenosine triphosphatase activity. Histochem. J., 12, 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Swatland, H.J., 1980b. Anisotropy and post mortem changes in the electrical resistivity and capacitance of skeletal muscle. J. Anim. Sci., 50, 67–74.

    Google Scholar 

  • Swatland, H.J., 1980c. A histological basis for differences in breast meat yield between two strains of white turkeys. J. Agric. Sci., Camb., 94, 383–388.

    Article  Google Scholar 

  • Swatland, H.J., 1980d. Analysis of growth in a complex muscle (M. supraooraooideus, Anas platyrhynchos). Growth, in press.

    Google Scholar 

  • Swatland, H.J. and Cassens, R.G., 1972a. Peripheral innervation of muscle from stress-susceptible pigs. J. comp. Pathol., 82, 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Swatland, H.J. and Cassens, R.G., 1972b. Muscle growth: the problem of fibres with an intrafascicular termination. J. Anim. Sci., 35, 336–344.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J. and Cassens, R.G., 1973a. Prenatal development, histochemistry and innervation of porcine muscle. J. Anim. Sci., 36, 343–354.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J. and Cassens, R.G., 1973b. Inhibition of muscle growth in foetal sheep. J. Agric. Sci., Camb., 80, 503–509.

    Article  Google Scholar 

  • Swatland, H.J. and Cassens, R.G., 1973c. Observations on the post mortem histochemistry of myofibers from stress susceptible pigs. J. Anim. Sci., 37, 885–891.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J. and Cassens, R.G., 1974. The role of innervation in muscle development and function. J. Anim. Sci., 38, 1092–1102.

    PubMed  CAS  Google Scholar 

  • Swatland, H.J. and Kieffer, N.M., 1974. Fetal development of the double muscled condition in cattle. J. Anim. Sci., 38, 752–757.

    PubMed  CAS  Google Scholar 

  • Swift, H. and Rasch, E., 1956. Microphotometry with visible light. In: Oster, G. and Pollister, A.W., Physical Techniques in Biological Research, Vol. 8, 353–400, Academic Press, New York.

    Google Scholar 

  • Tuma, H.J., Venable, J.H., Wuthier, P.R. and Henrickson, R.L., 1962. Relationship of fiber diameter to tenderness and meatiness as influenced by bovine age. J. Anim. Sci., 21, 33–36.

    Google Scholar 

  • van den Hende, C. Muylle, E., Oyaert, W. and de Roose, P., 1972. Changes in muscle characteristics in growing pigs. Histochemical and electron microscopic study. Zbl. Vet. Med. A., 19, 102–110.

    Google Scholar 

  • West, R.L., 1974. Red to white fiber ratios as an index of double muscling in beef cattle. J. Anim. Sci., 38, 1165–1175.

    PubMed  CAS  Google Scholar 

  • White, N.A., McGavin, M.D. and Smith, J.E., 1978. Age-related changes in percentage of fiber-types and mean fiber diameters of the ovine quadriceps muscles. Am. J. Vet. Res., 39, 1297–1302.

    PubMed  CAS  Google Scholar 

  • Wick, R.A. and Allenspach, A.L., 1978. Histological study of muscular hypoplasia in the crooked neck dwarf mutant (cn/cn) chick embryo. J. Morph., 158, 21–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 ECSC, EEC, EAEC, Brussels-Luxemburg

About this chapter

Cite this chapter

Swatland, H.J. (1982). Quantitative Histochemistry of Muscle Enlargement and Post Mortem Metabolism. In: King, J.W.B., Ménissier, F. (eds) Muscle Hypertrophy of Genetic Origin and its use to Improve Beef Production. Current Topics in Veterinary Medicine and Animal Science, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7550-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7550-7_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7552-1

  • Online ISBN: 978-94-009-7550-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics