Advertisement

Role of Changes in Na+ Transport in Cell Membranes in the Pathogenesis of Primary Hypertension

  • Philippe Meyer
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 16)

Abstract

Experimental epidemiological and clinical studies show clearly that there exists a close relationship between primary hypertension and body sodium (Na+). The fact that the first investigators were oriented towards extracellular Na+ is not surprising when we consider the high concentration of this ion in the extracellular fluid volume, compared to the intracellular medium, as well the undisputable role of this body fluid compartment in the maintenance of arterial pressure. However, numerous studies have been unable to demonstrate any clear-cut increase in the extracellular fluid volume in essential hypertension, a result that would be expected if an increase in extracellular Na+ were involved [1].

Keywords

Essential Hypertension Erythrocyte Membrane Sodium Transport Primary Hypertension Human Hypertension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schalekamp A, Beevers DG, Kolsres G, Lebel M, Froser R, Birkenhäger WH: Body fluid volume in low renin hypertension 2: 310–314, 1974.Google Scholar
  2. 2.
    Tobian L, Binion JT: Tissue cations and water in arterial hypertension. Circulation 5: 754, 1952.PubMedGoogle Scholar
  3. 3.
    Villamil MF, Matloff J: Changes in vascular ionic content and distribution across aortic coarctation in the dog. Am J Physiol 228: 1087–1093, 1975.PubMedGoogle Scholar
  4. 4.
    Leonard E: Alteration of contractile responses of artery strips by a potassium-free solution, cardiac glycosides and changes in stimulus frequency. Am J Physiol 189: 185–190, 1957.PubMedGoogle Scholar
  5. 5.
    Mason DT, Braunwald E: Studies on digitalis - Effects of ouabain on forearm vascular resistance and venous tone in normal subjects and in patients in heart failure. J clin Invest 43: 532–543, 1964.PubMedCrossRefGoogle Scholar
  6. 6.
    MP: Sodium ions, calcium ions, blood pressure regulation and hypertension: a reassessment and a hypothesis. Am J Physiol 232:cl65–cl73, 1977.Google Scholar
  7. 7.
    Horackova M, Vassort G: Na-Ca exchange in regulation of cardiac contractility. J Gen Physiol 73: 403–424, 1979.PubMedCrossRefGoogle Scholar
  8. 8.
    Franco-Morselli R, Bauddouin-Legros M, De Mendonca M et al.: Plasma catecholamines in essential human hypertension and in DOCA-salt hypertension of the rat. In: Circulating Catecholamines and Blood Pressure, pp. 27–38. Birkenhäger WH, Falk HE, eds. Utrecht: Bunge, 1978.Google Scholar
  9. 9.
    Gesser von U: Intra- und extrazellulare Electrolyte Veränderungen bei essentieller Hypertonie vor und nach Behandlung. Z Kreislaufforsch 51: 177–183, 1962.Google Scholar
  10. 10.
    Losse M, Wehmeyer H, Wessels F et al.: Electrolytgehalt von Erythrocyten bei arterieller Hypertonie. Klin Wochenschr 38: 393–395, 1960.PubMedCrossRefGoogle Scholar
  11. 11.
    Edmondson RPS, Thomas RD, Hilton PJ, Patrick J, Jones NF: Abnormal leucocyte composition and sodium transport in essential hypertension. Lancet 1:1%%:–1005, 1975.Google Scholar
  12. 12.
    Ambrosioni E, Tartagnis F, Montebugnoli L, Costa FY, Magnani B: Intralymphocytic sodium in hypertensive patients. In: Intracellular Electrocytes and hypertension, pp. 78–86. Zumkley H, Losse H, eds. Stuttgart: Georg Thieme, 1980.Google Scholar
  13. 13.
    Nagaoka A, Kinuchi K, Aramaki Y: Participation of tissue electrolytes and water to spontaneous hypertension in rats. Jap Circ Res 34: 489, 1980.CrossRefGoogle Scholar
  14. 14.
    Dietz R, Harbara M, Schönig H: The role of the kidney in the pathogenesis of spontaneous hypertension of rats. Jap Heart J 20 (suppl 1): 52–54, 1979.Google Scholar
  15. 15.
    De Mendonca P, Garay RP, Ben-Ishai D, Meyer P: Abnormal erythrocyte cation transport in primary hypertension: clinical and experimental studies. Hypertension 3: 179, 1981.Google Scholar
  16. 16.
    Jones AW: Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats. Influences of aldosterone, norepinephrine and angiotensin. Circ Res 33: 563–572, 1973.PubMedGoogle Scholar
  17. 17.
    Friedman SM: Evidence for enhanced sodium transport in the tail artery of the spontaneously hypertensive rat. Hypertension 1: 572–582, 1979.PubMedGoogle Scholar
  18. 18.
    Ben-Ishay D, Aviram A, Viskoper R: Increased erythrocyte sodium efflux in genetic hypertensive rats of the Hebrew University strain. Experinentia 31: 660–662, 1975.CrossRefGoogle Scholar
  19. 19.
    Friedman SM, Nakashima M, Mclndoe RA et al.: Increased erythrocyte permeability to Li and Na in the spontaneously hypertensive rat. Experientia 32: 476–478, 1976.PubMedCrossRefGoogle Scholar
  20. 20.
    Gulak PV, Boroskina GM, Postnov YV: Ca2+ binding to erythrocyte membrane of hypertensive men and rats: effects of acetylcholine and eserine. Experientia 35: 1471–1472, 1979.PubMedCrossRefGoogle Scholar
  21. 21.
    Postnov YV, Orlov SN, Shevchenko A et al.: Altered sodium permeability, calcium binding and NA+; K+ ATPase activity in the red cell membrane in essential hypertension. Pfluegers Arch 371: 263–269, 1977.CrossRefGoogle Scholar
  22. 22.
    Postnov YV, Orlov SN, Poludin N: Decrease of calcium binding in the red blood cell membrane in spontaneously hypertensive rats and in essential hypertension. Pfluegers Arch 379: 181–195, 1979.CrossRefGoogle Scholar
  23. 23.
    De Mendonca M, Grichois ML, Garay RP et al.: Abnormal net Na+ and K+ fluxes in erythrocytes of three varieties of genetically hypertensive rats. Proc Nat Acad Sci USA 77: 4283–4286, 1980.PubMedCrossRefGoogle Scholar
  24. 24.
    Devynck MA, Pernollet MG, Nunez AM, Meyer P: Analysis of calcium handling in erythrocyte membranes of genetically hypertensive rats. Hypertension 3: 397, 1981.PubMedGoogle Scholar
  25. 25.
    Boriskina GN, Gulak PV, Postnov YV: Phosphoinositide content in the erythrocyte membrane of rats with spontaneous and renal hypertension. Experientia 34: 744, 1978.PubMedCrossRefGoogle Scholar
  26. 26.
    Urry DW, Trapane DL, Andrews SK, Long MM, Overbeck HW, Oparie S: NMR observation of altered sodium interaction with human erythrocyte membranes of essential hypertensives. Biochem Biophys Res Comm 96: 514–521, 1980.PubMedCrossRefGoogle Scholar
  27. 27.
    Daveloose D, Viret J, Molle D, Grenier F: Mise en évidence par marquage de spin d’une modification structurale de la membrane erythrocytaire du rat génétiquement hypertendu. C R Acad Sci [D] (Paris 290: 85, 1980.Google Scholar
  28. 28.
    Montenay-Garestier T, Aragon I, Devynck MA, Meyer P, Helene C: Structural modifications of erythrocyte membranes in spontaneously hypertensive rats. A fluorescence polarization study. Biochem Biophys Res Comm, 100: 660, 1981.PubMedCrossRefGoogle Scholar
  29. 29.
    Devynck MA, Pernollet MG, Nunez AM, Aragon I, Montenay-Garestier T, Hélène C, Meyer P: Biophysical and biochemical demonstration of a diffuse alteration of plasma membrane in SHR’s. In: Rats with Spontaneous Hypertension and Related Studies, Ganten D, ed. Stuttgart: Schattauer Verlag (in press).Google Scholar
  30. 30.
    Postnov YV, Orlov SN: Evidence of altered calcium accumulation and calcium binding by the membranes of adipocytes in the membranes of spontaneously hypertensive rats. Pfluegers Arch 385: 85–89, 1980.CrossRefGoogle Scholar
  31. 31.
    Canessa M, Adragna N, Solomon HS, Connolly TM, Tosteson DC: Increased sodium-lithium countertransport in red cells of patients with essential hypertension. Engl J Med 302: 772–777, 1980.CrossRefGoogle Scholar
  32. 32.
    Garay RP, Meyer P: A new test showing abnormal net Na+ and K+ fluxes in erythrocytes of essential hypertensive patients. Lancet 1: 349–353, 1979.PubMedCrossRefGoogle Scholar
  33. 33.
    Garay RP, Dagher G, Pernollet MG, Devynck MA, Meyer P: Inherited defect in a Na+, K+ co-transport system in erythrocytes from essential hypertensive patients. Nature 284: 281–283, 1980.PubMedCrossRefGoogle Scholar
  34. 34.
    Garay RP, Elghozi JL, Dagher G, Meyer P: Laboratory distinction between essential and secondary hypertension by measurement of erythrocyte cation fluxes. N Engl J Med 302: 769–711, 1980.PubMedCrossRefGoogle Scholar
  35. 35.
    Wessels VF, Junoe-Hulsing G, Hosse H: Untersuchungen zur Natrium Permeabilität der Erythrozyten bei Hypertonikern und Normotonikern mit familiarer Hochdruckbelastung. Kreislaufforsch 56: 374–380, 1967.Google Scholar
  36. 36.
    De Wardener HE, McGregor G: The possible role of a circulating sodium transport inhibitor in the aetiology of essential hypertension. In: Intracellular Electrolytes and Hypertension. Zumkley H, Losse H, eds. Stuttgart: Georg Thieme, 1980.Google Scholar
  37. 37.
    Walter U, Distler A: Effects of ouabain and furosemide on ATPase activity and sodium transport in erythrocytes of normotensives and of patients with essential hypertension. In: Intracellular Electrolytes and Hypertension, pp. 170–181. Zumkley H, Losse H, eds. Stuttgart: Georg Thieme, 1980.Google Scholar
  38. 38.
    Erdmann E, Werdan K, Hegelberger R, Prudiniewski M, St Christe: Determination of the number of Na+, K+− ATPase molecules, their enzymatic activity and the active Na+ K+ transport of human erythrocytes in kypokaliemia and in hypertension. In: Intracellular electrolytes and hypertension, pp. 164–169. Zumkley H, Losse H, eds. Stuttgart: Georg Thieme, 1980.Google Scholar
  39. 39.
    Wambach G, Helber A, Bonner G, Hummerich W, Kaufmann W: Na+ and K+ concentration in erythrocytes and Na+, K+− ATPase activity in red cell ghosts in controls and patients with essential hypertension. In: Intracellular electrolytes and hypertension, pp. 158–163. Zumkley H, Losse H, eds. Stuttgart: Georg Thieme, 1980.Google Scholar
  40. 40.
    Webb RC, Bhalla RC: Altered calcium sequestration by subcellular factions of vascular smooth muscle from spontaneously hypertension rats - J. Mol Cell Cardiol 8: 651–661, 1976.PubMedCrossRefGoogle Scholar
  41. 41.
    Friedman SM, Friedman CL: The ionic matrix of vasoconstriction. Circ Res 20–21 (suppl 2): 147–155, 1967.Google Scholar
  42. 42.
    Rorive GL, Van Cauwenberg H: Ionic composition of arterial wall in experimental hypertension. Clin Sci Mol Med 45: 305s, 1973.Google Scholar
  43. 43.
    Folkow B: The haemodynamic consequences of adaptive changes of the resistance vessels in hypertension. Clin Sci 41: 1–12, 1971.PubMedGoogle Scholar
  44. 44.
    Dahl LK, Heine M, Tassinari L: Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 194: 480, 1962.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, The Hague 1982

Authors and Affiliations

  • Philippe Meyer

There are no affiliations available

Personalised recommendations