Skip to main content

Summary

Small variations in the vertical component of gravity (gv have been found to be of considerable use in geophysical exploration. The phenomenon of interest to conventional exploration geophysics is the variation of gv with position on the surface. Two-dimensional contour maps of this variation are usually prepared. The change in gv caused by a buried mass will, of course, be greatest directly above the mass, but will vary with the horizontal distance between the mass and the measuring point. This variation can be used to attempt to locate and describe the mass. Surface gravimetry is typically used to locate buried faults, domes and other structures of interest to the exploration geophysicist, and a vast literature exists describing the method.

Borehole gravimetry is a fairly recent extension of surface gravimetry to the third dimension. The phenomenon of interest is the variation of gv with depth in the hole. This variation, like that on the surface, is caused by both the vertical and lateral position of the buried mass, but while with the surface gravimeter the lateral distance between the mass of interest and the instrument is changed, with the borehole gravimeter the vertical distance is changed instead. This permits a different look at the mass and a somewhat different method of analysis.

This paper discusses the history of the development of borehole gravimetry and the borehole gravimeter. Important aspects of field operations are described and the corrections necessary for data reduction are explained. The several methods of analysing the data to attempt to infer subsurface structure from borehole gravity and density log data are outlined. Finally, a number of applications of the method are listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Airy, G. B. (1856). Account of pendulum experiments undertaken in the Harton Colliery for the purpose of determining the mean density of the earth, Royal Soc. Phil Trans, 146, 297–355.

    Article  Google Scholar 

  • Algermissen, S. T. (1961). Underground and surface gravity survey, Leadwood, Missouri, Geophysics, 26, 158–68.

    Article  Google Scholar 

  • ANON. (1966). Esso licenses down-hole gravity meter. Oil and Gas J., 64 (26), 101–2.

    Google Scholar 

  • Arzi, A. A. (1975). Microgravity for engineering applications, Geophys. Prospecting, 23, 408–25.

    Article  Google Scholar 

  • Baker, G. E. (1977). Gravity instrument cannister feasibility study, EG&G Report No. GEB77–57, 63 p.

    Google Scholar 

  • Bell, C. C., FORWARD, R. L., MILLER, L. R., BEARD, T. D. and BARAN, T. M. (1969). Static gravitational gradient field detection with a rotating torsional gradiometer, Proc. 1969 Symp. on Unconventional Inertial Sensors, Naval Applied Science Laboratory, Brooklyn NY, 29–30 January, p. 143–68.

    Google Scholar 

  • Beyer, L. A. (1971). The vertical gradient of gravity in vertical and near-vertical boreholes, US Geological Survey Open-file Report 71–42, 229 p.

    Google Scholar 

  • Beyer, L. A. (1977a). The interpretation of borehole gravity surveys (abstract only), Geophysics, 42, 141.

    Google Scholar 

  • Beyer, L. A. (1977b). Interpretation of borehole gravity in the southern San Joaquin Basin (abstract only), Geophysics, 42, 1100.

    Google Scholar 

  • Beyer, L. A. (1979a). Terrain corrections for borehole and tower gravity measurements, US Geological Survey Open-file Report 79–121, 17 p.

    Google Scholar 

  • Beyer, L. A. (1979b). Terrain corrections for borehole and gravity measurements, Geophysics, 44, 1584–7.

    Article  Google Scholar 

  • Beyer, L. A. (1980). Borehole gravity program of the US Geological Survey (1963–1975)—Brief history and basic data, US Geological Survey Open-file Report 80–903, 76 p.

    Google Scholar 

  • Beyer, L. A. and CLUTSOM, F. G. (1978a). Borehole gravity survey in the Dry Piney oil and gas field, Big Piney-Large area, Sublette County, Wyoming, US Geological Survey Oil and Gas Investigations Chart OC-84 2 pi, 12 p.

    Google Scholar 

  • Beyer, L. A. and CLUTSOM, F. G. (1978b). Density and porosity of oil reservoirs and overlying formations from borehole gravity measurements, Gebo Oil Field, Hot Springs County, Wyoming, US Geological Survey Oil and Gas Investigations Chart OC-88 3 pi, 16 p.

    Google Scholar 

  • Beyer, L. A. and CLUTSOM, F. G. (1980). Density and porosity of Upper Cretaceous through Permian formations from borehole gravity measurements, Big Polecat oil and gas field, Park County, Wyoming, US Geological Survey Oil and Gas Investigations Chart OC-103 3 pi, 12 p.

    Google Scholar 

  • Beyer, L. A. and CORBATO, C. E. (1972). A FORTRAN IV computer program for calculating borehole gravity terrain corrections, US Geological Survey Open-file Report (Available from NTIS as PB-208–679).

    Google Scholar 

  • Bodemuller, H. (1963). Measurement and geodetic evaluation of vertical gradients of gravity, Boll. Geol, 69, 261–79.

    Google Scholar 

  • Bradley, J. W. (1976). The commercial application and interpretation of the borehole gravimeter, in Tomorrow’s Oil from Today’s Provinces, Ed. R. E. JANTZEN. American Association of Petroleum Geologists, Pacific Section, Misc. Pub. 24, p. 98–109.

    Google Scholar 

  • Brown, A. R., RASMUSSEN, N. F., GARNER, C. O. and CLEMENT, W. G. (1975). Borehole gravity logging fundamentals, Preprint, SEG 45th Annual Meeting, Denver, CO, 12–16 October, 20 p.

    Google Scholar 

  • Buck, S. W. (1973). Traverse gravimeter experiment final report, Charles Stark Draper Laboratory Report No. R-739, 75 p.

    Google Scholar 

  • Caton, P. W. (1981). Improved methods for reducing borehole-gravity data—Applications and analyses of reduced gravity plots, Soc. Prof Well Log Analysts 22nd Annual Logging Symp. Trans , 22–26 June.

    Google Scholar 

  • Coyle, L. A. (1976). The application of borehole gravimetry to remote sensing of anomalous masses, Purdue Univ. M.S. Thesis. (Available from University Microfilms).

    Google Scholar 

  • Domzalski, W. (1954). Gravity Measurements in a vertical shaft, Trans. Inst. Mining Meta, 63(9), 429–45.

    Google Scholar 

  • Domzalski, W. (1955). Three dimensional gravity survey, Geophys. Prospecting, 3, 15–55.

    Article  Google Scholar 

  • Drake, R. E. (1967). A surface-subsurface measurement of an anomaly in the vertical gradient of gravity near Loveland Pass, Colorado, Univ. of California Riverside M.S. Thesis, 41 p.

    Google Scholar 

  • EDCON (1977). Borehole Gravity Meter Manual. EDCON, Denver, CO.

    Google Scholar 

  • Elkins, T. A. (1974). Personal Communication.

    Google Scholar 

  • Facsinay, L. and HAAZ, H. (1953). Density determinations of rocks, based on subsurface gravimeter measurements at different depths, Magyar Allami Eotvos Lorand Geofisikai Intezet Geofizikai Kozlemenyek, 2 1–9 (in Hungarian).

    Google Scholar 

  • Fajklewicz, Z. J. (1976). Gravity vertical gradient measurements for the detection of small geologic and anthropogenic forms, Geophysics, 41, 1016–30.

    Article  Google Scholar 

  • Forward, R. A. (1965) Rotating gravitational and inertial sensors, AIAA Unmanned Spacecraft Meeting Los Angeles, CA, 1–4 March, 6 p.

    Google Scholar 

  • Gilbert, R. L. G. (1952). Gravity observations in a borehole, Nature , 170, 424–5.

    Article  Google Scholar 

  • Goodell, R. R. and FAY, C. H. (1964). Borehole gravity meter and its application, Geophysics, 29, 774–82.

    Article  Google Scholar 

  • Grant, F. S. and WEST, G. F. (1965). Interpretation Theory in Applied Geophysics. Mraw-Hill, New York.

    Google Scholar 

  • Hammer, S. (1939). Terrain corrections for gravimeter stations, Geophysics, 4, 184–93.

    Article  Google Scholar 

  • Hammer, S. (1950). Density determinations by underground gravity measurements, Geophysics , 15, 637–52.

    Article  Google Scholar 

  • Hammer, S. (1974). Approximation in gravity interpretation calculations, Geophysics , 39 , 205–22.

    Article  Google Scholar 

  • Head, W. J. and KOSOSKI, B. A. (1979). Borehole Gravity: a new tool for the ground-water hydrologist (abstract only), Trans. Am. Geophys. Union, 60, 248.

    Google Scholar 

  • Healey, D. L. (1970). Calculated in situ bulk densities from subsurface gravity observations and density logs, Nevada Test Site and Hot Creek Valley, Nye County, Nevada, US Geological Survey Professional Paper 700-B, p. B52-B62.

    Google Scholar 

  • Healey, D. L. (1977). Personal Communication.

    Google Scholar 

  • Hearst, J. R. (1968). Terrain corrections for borehole gravimetry, Geophysics, 33, 361–2.

    Article  Google Scholar 

  • Hearst, J. R. (1976). Effects of mudcake and sonde angle on a simple two-detector density log, Log Analyst , 17(3), 11–14.

    Google Scholar 

  • Hearst, J. R. (1977a). On the range of investigation of a borehole gravimeter, Soc. Prof. Well Log Analysts 18th Annual Logging Symp. Trans., 5–8 June, p. E1-E12.

    Google Scholar 

  • Hearst, J. R. (1977b). Estimation of dip and lateral extent of beds with borehole gravimetry, Geophysics , 42, 990–4.

    Article  Google Scholar 

  • Hearst, J. R. (1978a). BIFUR II, a program for calculating borehole gravity caused by two-dimensional structure, Lawrence Livermore Laboratory Report UCID-17 852, 22 p.

    Google Scholar 

  • Hearst, J. R. (1978b). Personal communication.

    Google Scholar 

  • Hearst, J. R. and CARLSON, R. C. (1977). The gravimetric density formula for a spherical shell, Geophysics , 42, 1469.

    Article  Google Scholar 

  • Hearst, J. R. and MAGUE, H. L. (1976). Structure elucidation with borehole gravimetry, Geophysics, 41, 491–505.

    Article  Google Scholar 

  • Hearst, J. R., KASAMEYER, P. W. and OWEN, L. B. (1978). Potential uses for a high-temperature borehole gravimeter, Lawrence Livermore Laboratory Report UCRL-52421, 8 p.

    Book  Google Scholar 

  • Hearst, J. R., SCHMOKER, J. W. and CARLSON, R. C. (1980). Effects of terrain on borehole gravity data, Geophysics , 45, 234–43.

    Article  Google Scholar 

  • Heintz, K. O. and ALEXANDER, M. (1979). Sulfur exploration with core hole and surface gravity (abstract only), Geophysics, 44, 370.

    Google Scholar 

  • Heiskanen, W. A. and VENING MEINESZ, F. A. (1958). The Earth and Its Gravity Field. Mraw-Hill, New York.

    Google Scholar 

  • Henderson, G. C. and IVERSON, R. M. (1968). Testing gravimeters for lunar surface measurements, IEEE Trans, on Geoscience Elec., GE-6, 132–8.

    Article  Google Scholar 

  • Hinze, W. J., Bradley, J. W. and Brown, A. R. (1978). Gravimeter survey in the Michigan deep borehole, J. Geophys. Res., 83, 5864–7.

    Article  Google Scholar 

  • Howell, L. G., HEINTZ, K. O. and BARRY, A. (1966). The development and use of a high-precision downhole gravity meter, Geophysics, 31, 764–72.

    Article  Google Scholar 

  • Jageler, A. H. (1976). Improved hydrocarbon reservoir evaluation through use of borehole-gravimeter data, J. Petroleum Technol., 28, 709–18.

    Google Scholar 

  • Jageler, A. H. (1981). Personal communication.

    Google Scholar 

  • JONES, B. R. (1972). The use of downhole gravity data in formation evaluation, Soc. Prof. Well Log Analysts 13th Annual Logging Symp. Trans., 7–10 May, p. M1-M12.

    Google Scholar 

  • Jung, H. (1939). Density determinations in solid rock through measurement of acceleration due to gravity at different subsurface depths (in German), Zeit. Geoph., 15, 56–65.

    Google Scholar 

  • Kumegai, N., ABE, E. and YOSHIMURA, Y. (1960). Measurement of vertical gradient of gravity and its significance, Boll. Geof., 2, 607–30.

    Google Scholar 

  • Kuo, J. T., OTTAVANI, M. and SINGH, S. K. (1969). Variations of vertical gravity gradient in New York City and Alpine, New Jersey, Geophysics, 34, 235–48.

    Article  Google Scholar 

  • Lacoste, L. J. B. (1934). A new type long-period vertical seismograph, Physics, 5, 178–82.

    Article  Google Scholar 

  • Lacoste, L. J. B. (1935). A simplification in the conditions for the zero-length-spring seismograph, Bull Seis. Soc. Am., 25, 176–9.

    Google Scholar 

  • Lacoste, L. J. B. (1977). Method and apparatus for leveling an instrument in a well bore, US Patent No. 4,040,189.

    Google Scholar 

  • Lacoste, L. J. B. and ROMBERG, A. (1942). Force measuring device, US Patent No. 2 293 437.

    Google Scholar 

  • Lacoste, L. J. B. and Romberg, A. (1945). Force measuring instrument, US Patent No. 2 377 889.

    Google Scholar 

  • Lafehr, T. R., MERKEL, R. H. and HERRING, A. T. (1979). Evaluation and applications of new Loste and Romberg borehole gravity meter (abstract only), Geophysics, 44, 369–70.

    Google Scholar 

  • Longman, I. M. (1959). Formulas for computing tidal acceleration, J. Geophys. Res., 64, 2351.

    Article  Google Scholar 

  • Mcculloh, T. H. (1965). A confirmation by gravity measurements of an underground density profile based on core densities, Geophysics, 30, 1108–32.

    Article  Google Scholar 

  • Mcculloh, T. H. (1966a). Gravimetric effects of petroleum accumulations—a preliminary summary, US Geological Survey Circular 530, 4 p.

    Google Scholar 

  • Mcculloh, T. H. (1966b). The promise of precise borehole gravimetry in petroleum exploration and exploitation, US Geological Survey Circular 531.

    Google Scholar 

  • Mcculloh, T. H. (1967a). Borehole gravimetry—new developments and applications, in New Geophysical Developments and Methods: Proc 7th World Petroleum Congress, Mexico City , 2–8 April. Elsevier, London, pp. 85–99.

    Google Scholar 

  • Mcculloh, T. H. (1967b). Mass properties of sedimentary rocks and gravimetric effects of petroleum and natural-gas reservoirs, US Geological Survey Professional Paper 528A, 50 p.

    Google Scholar 

  • Mcculloh, T. H., Loste, L. J. B., Schoellhamer, J. E. and Pampayan, E. H. (1967a). The US Geological Survey-Loste and Romberg precise borehole gravimeter system—instrumentation and support equipment, US Geological Survey Professional Paper 575-D, p. D92-D100.

    Google Scholar 

  • Mcculloh, T. H., SCHOELLHAMER, J. E., PAMPAYAN, E. H. and PARKS, H. B. (1965). The US Geological Survey-Loste and Romberg precise borehole gravimeter—test results, US Geological Survey Professional Paper 575-D, p. D101-D112.

    Google Scholar 

  • Mcculloh, T. H., KANDLE, J. R. and SCHOELLHAMER, J. E. (1968). Application of gravity measurements in wells to problems of reservoir evaluation, Soc. Prof. Well Log Analysts 9th Annual Logging Symp. Trans., p. 01–029.

    Google Scholar 

  • Miller, A. H. and INNES, M. J. S. (1953). Application of gravimeter observations to the determination of the mean density of the earth and of rock densities in mines, Public. Dominion Observatory, Ottawa, 16(4), 3–17.

    Google Scholar 

  • Nettleton, L. L. (1942). Gravity and magnetic calculations, Geophysics , 1 , 293–310.

    Article  Google Scholar 

  • Nettleton, L. L. (1976). Gravity and Magnetics in Oil Prospecting. Mraw-Hill, New York.

    Google Scholar 

  • Plouff, D. (1961). Gravity profile along Roberts Tunnel, Colorado, US Geological Survey Professional Paper 424-C, p. C263-C265.

    Google Scholar 

  • Plouff, D. (1966). Digital terrain corrections based on geographic coordinates, Preprint, 36th SEG Meeting, Houston.

    Google Scholar 

  • Rasmussen, N. F. (1973). Borehole gravity survey planning and operations, Soc. Prof. Well Log Analysts 14th Annual Logging Symp. Trans., p. Q1-Q28.

    Google Scholar 

  • Rasmussen, N. F. (1975). Borehole gravimeter finds bypassed oil, gas, Oil and Gas J., 73(39), 100–4.

    Google Scholar 

  • Robbins, S. L. (1979). Description of a special logging truck built for the US Geological Survey for borehole gravity surveys, US Geological Survey Open-file Report 79–1511, 67 p.

    Google Scholar 

  • Robbins, S. L. (1980). Bibliography with abridged abstracts of subsurface gravimetry (especially borehole) and corresponding in situ rock density measurements, US Geological Survey Open-file Report 80–710, 47 p.

    Google Scholar 

  • Robbins, S. L. (1981). Reexamination of the values used as constants in calculating rock density from borehole gravity data, Geophysics, 46, 208–10.

    Article  Google Scholar 

  • Rogers, G. R. (1952). Subsurface gravity measurements, Geophysics, 17, 365–77.

    Article  Google Scholar 

  • Schmoker, J. W. (1977a). Density variations in a quartz diorite determined from borehole gravity measurements, San Benito County, California, Log Analyst, 18(2), 32–8.

    Google Scholar 

  • Schmoker, J. W. (1977b). A borehole gravity survey to determine density variations in the Devonian shale sequence of Lincoln County, West Virginia, US Dept. of Energy, Energy Research Center MERC/CR-77–7, 15 p.

    Google Scholar 

  • Schmoker, J. W. (1978a) Accuracy of borehole gravity data, Geophysics, 43, 538–42.

    Article  Google Scholar 

  • Schmoker, J. W. (1978B). Personal communication.

    Google Scholar 

  • Schmoker, J. W. (1979). Interpretation of borejiole gravity surveys in a native-sulfur deposit, Culberson County, Texas, Economic Geol, 74, 1462–70.

    Article  Google Scholar 

  • Schmoker, J. W. (1980a). Terrain effects of cultural features upon shallow borehole gravity data, Geophysics , 45, 1869–71.

    Article  Google Scholar 

  • Schmoker, J. W. (1980b). Effect upon borehole-gravity data of salt structures typical of the WIPP site (northern Delaware Basin) Eddy County, New Mexico, US Geological Survey Oil and Gas Investigations Chart OC-109.

    Google Scholar 

  • Sherman, H. and Locke, S. (1975). Depth of investigation of neutron and density sondes for 35-percent porosity sandstone, Soc. Prof. Well Log Analysts 16th Annual Logging Symp. Trans., p Q1-Q25.

    Google Scholar 

  • Smith, N. J. (1950). The case for gravity data from boreholes, Geophysics, 15, 605–36.

    Article  Google Scholar 

  • Snyder, D. D. (1976). The borehole Bouguer gravity anomaly—application to interpreting borehole gravity surveys, Soc. Prof. Well Log Analysts 17th Annual Logging Symp. Trans., p. AA1-AA20.

    Google Scholar 

  • Snyder, D. D. and MERKEL, R. H. (1977). Generalized correction for dipping beds for the borehole gravity meter, Log Analyst, 18(2), 41–3.

    Google Scholar 

  • SPAN (1980). A Matter of Gravity. Span, Standard Oil Company of Indiana, pp. 14–17.

    Google Scholar 

  • Talwani, M. and EWING, M. (1960). Rapid computation of gravitational attraction of two-dimensional bodies of arbitrary shape, Geophysics, 25, 203–25.

    Article  Google Scholar 

  • Thyssen-Bornemisza, S. (1963). The vertical gravity gradient in borehole exploration, Geophysics, 28, 1072–3.

    Article  Google Scholar 

  • Thyssen-Bornemisza ornemisza, S. (1964). Determination of Bouguer gravity in shallow holes, Geophysics, 29, 445–6.

    Article  Google Scholar 

  • Thyssen-Bornemisza, S. (1965a). Determination of the vertical density gradient in a borehole, Geophysics, 30, 439–40.

    Article  Google Scholar 

  • Thyssen-Bornemisza, S. (1965b). The anomalous free-air vertical gradient in borehole exploration, Geophysics , 30, 441–3.

    Article  Google Scholar 

  • Trageser, M. B. (1970). A gradiometer system for gravity anomaly surveying, Charles Stark Draper Laboratory Report R-588, 44 p.

    Google Scholar 

  • Trageser, M. B. (1975). Feasibility model gravity gradiometer test results, Charles Stark Draper Laboratory Report P-179, 17 p.

    Google Scholar 

  • Vaschilov, YU. N. (1964). Allowance for the effects of the relief of the locality in gravimetric observations in underground workings and boreholes, Razvedochnaya i Promyslovaya Geofizika, 51, 71–5. Trans, by. J. E. Bradley, Addis Trans. Menlo Park CA, 1965.

    Google Scholar 

  • Veneruso, A. F. (1978). Personal communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Hearst, J.R., Carlson, R.C. (1982). Measurement and Analysis of Gravity in Boreholes. In: Fitch, A.A. (eds) Developments in Geophysical Exploration Methods—3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7349-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7349-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7351-0

  • Online ISBN: 978-94-009-7349-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics