International standardization of instruments used to determine mechanical properties of human skin

  • T. H. Cook


The formulation of standards for and endorsement of procedures, devices and units used in investigations of the mechanical behaviour of human skin will require the definition of desired mechanical properties and evaluation of existing and future technology in terms of its ability to generate this information.


Human Skin Circumferential Direction Undeformed State Extension Ratio Stress Relaxation Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, H. and Cook, T. H. (1977). Accounting for natural tension in the mechanical testing of human skin. J. Invest. Dermatol., 69, 310PubMedCrossRefGoogle Scholar
  2. 2.
    Barbenel, J. C. and Evans, J. H. (1977). The time dependent mechanical properties of skin. J. Invest. Dermatol., 69, 318PubMedCrossRefGoogle Scholar
  3. 3.
    Gunner, C. W., Hutton, W. C. and Burlin, T. E. (1979). The mechanical properties of skin in vivo a portable hand-held extensometer. Br. J. Dermatol., 100, 161PubMedCrossRefGoogle Scholar
  4. 4.
    Christensen, M. S., Hargens, C. W., Nacht, S. and Gans, E. H. (1977). Viscoelastic properties of intact human skin: instrumentation, hydration effects and the contribution of the stratum corneum. J. Invest. Dermatol., 69, 282PubMedCrossRefGoogle Scholar
  5. 5.
    Cook, T. H. (1978). Mechanical properties of human skin. Proceedings of the 3rd International Congress of Biorheology. August 28 (La Jolla)Google Scholar
  6. 6.
    Cook, T., Alexander, H. and Cohen, M. (1977). Experimental method for determining the 2- dimensional mechanical properties of living human skin. Med. Biol Eng. Comput., 15, 381PubMedCrossRefGoogle Scholar
  7. 7.
    Hussein, H. MG., Thompson, D. E. and Perritt, R. Q. (1978). Impedance of human soft tissue under various static preloads. Presented at the 31st Annual Conference on Engineering in Medicine and Biology. October 21–25 (Atlanta)Google Scholar
  8. 8.
    Landel, R. F., Peng, T J. and Brody, G. S. (1979). In vivo measurement of stress-strain and stress relaxation behavior of human skin. J. Rheol., 23, 113Google Scholar
  9. 9.
    Pierard, G. E. and Lapiere, Ch. M. (1977). Physiopathological variations in the mechanical properties of skin. Arch. Dermatol Res., 260, 231PubMedCrossRefGoogle Scholar
  10. 10.
    Thacker, J. G., Iachetta, F. A., Allaire, P. E., Edgerton, M. T., Rodeheaver, G. T. and Edlich, R. F. (1977). In vivo extensometer for measurement of the biomechanical properties of human skin. Rev. Sci. Instrum., 48, 181PubMedCrossRefGoogle Scholar
  11. 11.
    Tosti, A. T., Compagno, G., Fazzini, M. L. and Villardita, S. (1977). A ballistometer for the study of the plastoelastic properties of skin. J. Invest. Dermatol., 69, 315PubMedCrossRefGoogle Scholar
  12. 12.
    Wijn, P. F. F., Brakkee, A. J. M., Stienen, G. J. M. and Vendrik, A. J. H. (1976). Mechanical properties of the human skin in vivo for small deformations; a comparison of uniaxial strain and torsion measurements. In Kenedi, R. M. and Cowden, J. M. (eds.) Bedsore Biomechanics, pp. 103–108. (Baltimore: University Park Press)Google Scholar
  13. 13.
    Grahame, R. (1970). A method for measuring human skin elasticity in vivo with observations on the effects of age, sex and pregnancy. Clin. Sci., 39, 223PubMedGoogle Scholar

Copyright information

© MTP Press Limited 1981

Authors and Affiliations

  • T. H. Cook

There are no affiliations available

Personalised recommendations