Rotifer nutrition using supplemented monoxenic cultures

  • J. M. Scott
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 14)


The evolution of rotifer feeding/nutritional studies is discussed together with their relevance to ecological observations. Aseptic conditions and initially synxenic cultures are regarded as a basis for nutritional work. The marine rotifer Encentrum linnhei requires the amino acid dl-tryptophan as a supplement to the food-alga Brachiomonas submarina. Observations on feeding rotifers in natural water samples, together with the morphology of their feeding mechanisms, show Encentrum to be an omnivore; a natural source of tryptophan is suggested.

Vitamin B12 and thiamine requirements of Encentrum and Brachionusplicatilis are examined and evidence shown for the quantitative control of the former vitamin by the rotifer’s food algae.

Axenic cultivation of rotifers is discussed and restricted growth of Brachionus reported under such conditions.


rotifers nutrition synxenic monoxenic axenic dl-tryptophan vitamin B12 thiamine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, P. & Williams, P. J. LeB., 1971. Heterotrophic utilization of dissolved organic compounds in the sea. III. Measurement of the oxidation rates and concentrations of glucose and amino acids in seawater. J. mar. biol. Ass. U.K. 51: 111–125.CrossRefGoogle Scholar
  2. Bazire, M., 1953. Cultures pures d’Hydatina senta, premiers résultats. C.r. Acad. Sci. Paris 236: 855–857.PubMedGoogle Scholar
  3. Chau, Y. K., Chuecas, L. & Riley, J. P., 1967. The component combined amino acids of some marine phytoplankton species. J. mar. biol. Ass. U.K. 47: 543–554.CrossRefGoogle Scholar
  4. Cowey, C. B. & Corner, E. D. S., 1966. The amino-acid composition of certain unicellular algae, and of the faecal pellets produced by Calanus finmarchicus when feeding on them. In: Barnes, H. (Ed.). Some Contemporary Studies in Marine Science. George Allen & Unwin Ltd. London 225–231.Google Scholar
  5. Dougherty, E. C., 1959. Introduction to axenic culture of invertebrate metazoa: a goal. Ann. N. Y. Acad. Sci. 77: 27–54.CrossRefGoogle Scholar
  6. Dougherty, E. C., Solberg, B. & Ferral, D. J., 1961. The first axenic cultivation of a rotifer species. Experientia 17: 131–132.PubMedCrossRefGoogle Scholar
  7. Droop, M. R., 1968. Vitamin Bl2 and marine ecology. IV. The kinetics of uptake, growth and inhibiton in Monochrysis lutheri. J. mar. biol. Ass. U.K. 48: 689–733.CrossRefGoogle Scholar
  8. Droop, M. R., 1970. Nutritional investigation of phagotrophic Protozoa under axenic conditions. Helgolander wiss. Meeresunters. 20: 272–277.CrossRefGoogle Scholar
  9. Dumont, H. J., 1977. Biotic factors in the population dynamics of rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 98–122.Google Scholar
  10. Edmondson, W. T., 1962. Food supply and reproduction of zooplankton in relation to phytoplankton population. Rapp. P. v. Cons. perm. int. Explor. Mer 153: 137–141.Google Scholar
  11. Edmondson, W. T., 1965. Reproductive rate of planktonic rotifers as related to food and temperature in nature. Ecol. Monogr. 35: 61–111.CrossRefGoogle Scholar
  12. Gilbert, J. J., 1970. Monoxenic cultivation of the rotifer Brachi- onus calyciflorus in a defined medium. Oecologia 4: 89–101.CrossRefGoogle Scholar
  13. Gilbert, J. J. & Thompson, G. A., 1968. Alpha tocopherol control of sexuality and polymorphism in the rotifer Asplanchna Science 159: 734–736.PubMedCrossRefGoogle Scholar
  14. Hanna, B. A. & Lilly, D. M., 1974. Growth of Uronema marinum in chemically defined medium. Mar. Biol. 26: 153–160.CrossRefGoogle Scholar
  15. Kidder, G. W. & Dewey, V. C., 1951. The biochemistry of cil- iates in pure culture. In: A. Lwoff (Ed.), Biochemistry & physiology of protozoa. Academic Press Inc., N.Y.: 323–400.Google Scholar
  16. Meadow, N. D. & Barrows, C. H., 1971. Studies on ageing in a Bdelloid rotifer. 1. The effect of various culture systems on longevity and fecundity. J. exp. Zool. 176: 303–314.PubMedCrossRefGoogle Scholar
  17. Needham, A. E.. 1964. The biosynthesis of nucleic acids. The Growth Process in Animals. Pitman & Sons Ltd., London. 243 pp.Google Scholar
  18. Pejler, B., 1977. Experience with rotifer cultures based on Rhodomonas. Arch. Hydrobiol. Beih. Ergebn. Limn. 8: 264–266.Google Scholar
  19. Pourriot, R., 1965. Recherches sur l’écologie des rotifères. Vie Milieu Suppl. 21: 224 pp.Google Scholar
  20. Pourriot, R., 1977. Food and feeding habits of Rotifera. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 243–260.Google Scholar
  21. Provasoli, L. & Carlucci, A. F., 1974. Vitamins and growth regulators. In: W. D. P. Stewart (Ed.), Algal Physiology and Biochemistry. Blackwell Scientific Publications, Oxford, U.K.: 741–787.Google Scholar
  22. Provasoli, L., Conklin, D. E. & D’Agostino, A. S., 1970. Factors inducing fertility in aseptic Crustacea. Helgolanderwiss. Meeresunters. 20: 443–454.CrossRefGoogle Scholar
  23. Provasoli, L. & D’Agostino, A. S., 1969. Development of artificial media for Artemia salina. Biol. Bull. 136: 434–453.CrossRefGoogle Scholar
  24. Provasoli, L., Shiraishi, K. & Lance, J. R., 1959. Nutritional idiosyncrasies of Artemia and Tigriopus in monoxenic culture. Ann. N. Y. Acad. Sci. 77: 250–261.CrossRefGoogle Scholar
  25. Scott, J. M., 1974. A new marine rotifer of the genus Encentrum. Its morphology and cultivation. Zool. J. linn. Soc. 54: 247–251.CrossRefGoogle Scholar
  26. Scott, J. M., 1980. Effect of growth rate of the food alga on the growth/ingestion efficiency of a marine herbivore. J. mar. biol. Ass. U.K. 60: 681–702.CrossRefGoogle Scholar
  27. Scott, J. M., 1981. The vitamin B,2 requirement of the marine rotifer Brachionus plicatilis. J. mar. biol. Ass. U.K. 61: 983–994.CrossRefGoogle Scholar
  28. Starkweather, P. L., 1980. Aspects of the feeding behaviour and trophic ecology of suspension-feeding rotifers. Rotatoria. Proc. 2nd int. Rotifer Symp. Gent: 63–72.Google Scholar
  29. Turner, M. F., 1979. Nutrition of some marine microalgae with special reference to vitamin requirements and utilization of nitrogen and carbon sources. J. mar. biol. Ass. U.K. 59: 535–552.CrossRefGoogle Scholar
  30. Widholm, J. M., 1972. Cultured Nicotiana tabacum cells with an altered anthranilate synthetase which is less sensitive to feedback inhibition. Biochim. Biophys. Acta 261: 52–58.PubMedGoogle Scholar

Copyright information

© Dr W. Junk Publishers, The Hague 1983

Authors and Affiliations

  • J. M. Scott
    • 1
  1. 1.Dunstaffnage Marine Research LaboratoryObanScotland

Personalised recommendations