Skip to main content

Molecular Dynamics Simulation of Thermal Explosion

  • Chapter
Chemical Instabilities

Part of the book series: NATO ASI Series ((ASIC,volume 120))

Abstract

The temperature instability of a two-dimensional reactive fluid of N hard disks bounded by heat conducting walls has been studied by molecular dynamics simulation. The collision of two hard disks is either elastic or inelastic (exothermic reaction), depending on whether the relative kinetic energy at impact exceeds a prescribed activation barrier. Heat removal is accomplished by using a wall boundary condition involving diffuse and specular reflection of the incident particles. Critical conditions for ignition have been obtained and the observations compared with continuum theory results. Other quantities which can be studied include temperature profiles, ignition times, and the effects of local fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Gray and P.R. Lee, Combustion and Oxidation Review 2, 1 (1967).

    Google Scholar 

  2. A.G. Marzhanov and A.E. Averson, Combust. Flame 16, 89 (1971).

    Article  Google Scholar 

  3. D.A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Plenum Press, New York, 1969), 2nd ed.

    Google Scholar 

  4. W. Gill, A.R. Shouman and A.B. Donaldson, Combust. Flame 41, 99 (1981).

    Article  Google Scholar 

  5. T. Takeno, Combust. Flame 29, 209 (1977).

    Article  CAS  Google Scholar 

  6. N.W. Bazley and G.C. Wake, Combust. Flame 33, 161 (1978).

    Article  CAS  Google Scholar 

  7. J.W. Enig, D. Shanks and R.W. Southworth, “The Numerical Solution of the Heat Conduction Equation Occurring in the Theory of Thermal Explosions,” NAVORD Rept$14377, U.S. Ordanance Laboratory, Nov. 7, 1956.

    Google Scholar 

  8. A.R. Shouman, A.B. Donaldson and H.Y. Tsao, Combust. Flame 23, 17 (1974).

    Article  Google Scholar 

  9. J.W. Bebernes and D.R. Kassoy, SIAM J. Appl. Math 40, 476 (1981).

    Article  Google Scholar 

  10. For an extensive bibliography, see W.W. Wood and J.J. Erpen-beck, Ann. Rev. Phys. Chem. 27, 319 (1976).

    Article  Google Scholar 

  11. D. Levesque and J.J. Weis, in Monte Carlo Methods in Statistical Mechanics, K. Binder, ed. ( Springer Verlag, Berlin, 1979 ).

    Google Scholar 

  12. H.W. Harrison and W.C. Schieve, J. Chem Phys. 58, 3634 (1973);

    Article  CAS  Google Scholar 

  13. D.L. Jolly, B.C. Freasier, and S. Nordholm, Chem. Phys. 21, 211 (1977);

    Article  CAS  Google Scholar 

  14. A.J. Stace and J.N. Murrell, Mol. Phys. 33, 1 (1977).

    Article  CAS  Google Scholar 

  15. See, for example, J. Portnow, Phys. Letters 51A, 370 (1975),

    Article  Google Scholar 

  16. P. Ortoleva and S. Yip, J. Chem. Phys. 65, 2045 (1976),

    Article  CAS  Google Scholar 

  17. and J.S. Turner, J. Phys. Chem. 81, 2379 (1977).

    Article  CAS  Google Scholar 

  18. D.P. Chou, Ph.D. Thesis, MIT (1981);

    Google Scholar 

  19. D.P. Chou and S. Yip, Combust. Flame 47, 215 (1982);

    Article  CAS  Google Scholar 

  20. D.P. Chou and S. Yip, to be published.

    Google Scholar 

  21. F.E. Walker, A.M. Karo, and J.R. Hardy, “Comparison of Molecular Dynamics Calculations with Observed Initiation Phenomena,” Lawrence Livermore Laboratory Report UCRL - 85187 (1981).

    Google Scholar 

  22. D.H. Tsai and S. Trevino, J. Chem Phys., to be published.

    Google Scholar 

  23. W.W. Wood and J.J. Erpenbeck, in Statistical Mechanics Part B: Time-dependent Processes, B.J. Berne, ed. (Plenum, New York, 1977), chap. 1.

    Google Scholar 

  24. W. Gill, A.R. Shouman and A.B. Donaldson, Combust. Flame 41, 99 (1981).

    Article  Google Scholar 

  25. D.R. Kassoy and J. Poland, SIAM J. Appl. Math. 39, 412 (1980).

    Article  Google Scholar 

  26. A simple approximation based on an extension of a space-independent description, the Semenov model, seems to be reasonably successful, J-C. Lermant, M.S. Thesis, MIT (1983), J-C. Lermant and S. Yip, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D.Reidel Publishing Company

About this chapter

Cite this chapter

Chou, DP., Yip, S. (1984). Molecular Dynamics Simulation of Thermal Explosion. In: Nicolis, G., Baras, F. (eds) Chemical Instabilities. NATO ASI Series, vol 120. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7254-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7254-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7256-8

  • Online ISBN: 978-94-009-7254-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics