Skip to main content

The Halogens—Chlorine, Bromine, and Iodine

  • Chapter
Book cover The Multinuclear Approach to NMR Spectroscopy

Part of the book series: NATO ASI Series ((ASIC,volume 103))

Abstract

The stable isotopes of chlorine (35Cl and 37Cl), bromine (79Br and 81Br), and iodine (127I) all are magnetic nuclei with electric quadrupole moments. The study of quadrupolar nuclei can provide unique and valuable information on a diversity of physicochemical and biological systems. The relaxation of quadrupolar nuclei is generally much simpler to interpret than the relaxation of nonquadrupolar nuclei. The relaxation of the former is in most cases totally dominated by the quadrupole relaxation, which is normally induced by purely intramolecular interactions modulated by the molecular motion. Studies of quadrupole relaxation have therefore provided very valuable information about molecular reorientation and association in liquids. The chemical exchange of the quadrupolar nucleus between two environments characterized by markedly different electric field gradients or correlation times can give unique information on exchange rates and the occurrence of weak interactions in inorganic as well as biological systems. In addition another important parameter may be obtained from NMR studies of quadrupolar nuclei in anisotropic environments: the quadrupole splitting. This parameter may be of great value for the characterization of the ordering of the system at a molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Lindman and S. Forsén, “Chlorine, Bromine and Iodine NMR. Physico-chemical and Biological Applications,” Vol. 12 of the series “NMR Basic Properties and Progress,” P. Diehl, E. Fluck, and R. Kosfeld, Eds., Springer Verlag, Berlin, 1976.

    Google Scholar 

  2. B. Lindman and S. Forsén in “NMR and the Periodic Table,” R. Harris and B. Mann, Eds., Academic Press, New York, 1978.

    Google Scholar 

  3. S. Forsén and B. Lindman in “Methods of Biochemical Analysis,” Vol. 27, D. Glick, Ed., John Wiley & Sons, Inc., 1981.

    Google Scholar 

  4. F. Bitter, Phys. Rev., 75, p. 1326 (1949).

    Google Scholar 

  5. W. H. Chambers and D. Williams, Phys. Rev., 76, p. 638 (1949).

    Article  Google Scholar 

  6. W. G. Proctor and F. C. Yu, Phys. Rev., 77, p. 716 (1950).

    Article  Google Scholar 

  7. R. V. Pound, Phys. Rev., 72, p. 1273 (1947).

    Article  MathSciNet  Google Scholar 

  8. R. V. Pound, Phys. Rev., 73, p. 1112 (1948).

    Article  Google Scholar 

  9. P. Diehl, Helv. Phys. Acta, 29, p. 219 (1956).

    Google Scholar 

  10. Y. Masuda, J. Phys. Soc. Japan, 11, p. 670 (1956).

    Article  Google Scholar 

  11. O. E. Myers, J. Chem. Phys., 28, p. 1027 (1958).

    Article  Google Scholar 

  12. R. E. Connick and C. P. Poppel, J. Am. Chem. Soc., 81, p. 6389 (1959).

    Article  Google Scholar 

  13. H. G. Hertz, Z. Electrochem., 64, p. 53 (1960).

    Google Scholar 

  14. H. G. Hertz, Z. Electrochem., 65, p. 36 (1961).

    MathSciNet  Google Scholar 

  15. D. Gill, M. P. Klein, and G. Kotowycz, J. Am. Chem. Soc., 90, p. 6870 (1968).

    Article  Google Scholar 

  16. G. Lindblom, H. Wennerström, and B. Lindman, Chem. Phys. Lett., 8, p. 489 (1971).

    Article  Google Scholar 

  17. T. R. Stengele and J. D. Baldeschwieler, Proc Natl. Acad. Sci. (USA), 55, p. 1020 (1966).

    Article  Google Scholar 

  18. R. T. Obermyer and E. P. Jones, J. Chem. Phys., 58, p. 1677 (1973).

    Article  Google Scholar 

  19. R. E. Morgan and J. H. Strange, Mol. Phys., 17, p. 397 (1969).

    Article  Google Scholar 

  20. J. H. Strange and R. E. Morgan, J. Phys. C., Solid State Phys., 3, p. 1999 (1970).

    Article  Google Scholar 

  21. H. Ottavi, Compt. Rend. Acad. Sci., Paris, 252, p. 1439 (1961).

    Google Scholar 

  22. J. S. Blicharski and K. Krynicki, Acta Phys. Pol., 22, p. 409 (1962).

    Google Scholar 

  23. A. Briguet, J.-C. Duplan, D. Graveron-Demilly, and J. Delman, Mol. Phys., 28, p. 177 (1974).

    Article  Google Scholar 

  24. R. Freeman, R. R. Ernst, and W. A. Anderson, J. Chem. Phys., 46, p. 1125 (1967).

    Article  Google Scholar 

  25. J. R. Lyerla, D. M. Grant, and R. D. Bertrand, J. Phys. Chem., 75, p. 3967 (1971).

    Article  Google Scholar 

  26. K. T. Gillen, M. Scwartz, and J. H. Noggle, Mol. Phys., 20, p. 889 (1971).

    Article  Google Scholar 

  27. T. C. Farrar, S. J. Druck, R. R. Shoup, and E. D. Becker, J. Am. Chem. Soc., 94, p. 699 (1972).

    Article  Google Scholar 

  28. G. C. Levy, Chem. Commun., p. 352 (1972).

    Google Scholar 

  29. G. C. Levy, J. D. Cargioli, and F. A. L. Anet, J. Am. Chem. Soc., 95, p. 1527 (1973).

    Article  Google Scholar 

  30. R. R. Shoup and T. C. Farrar, J. Magn. Reson., 7, p. 48 (1972).

    Google Scholar 

  31. R. E. J. Sears and E. L. Hahn, J. Chem. Phys., 45, p. 2753 (1966).

    Article  Google Scholar 

  32. J. S. Blicharski and B. Blicharska, Acta Phys. Pol., A 38, p. 289 (1970).

    Google Scholar 

  33. K. T. Gillen, D. C. Douglass, M. S. Malmberg, and A. A. Maryott, J. Chem. Phys., 57, p. 5170 (1972).

    Article  Google Scholar 

  34. R. E. J. Sears, J. Chem. Phys., 56, p. 983 (1972).

    Article  Google Scholar 

  35. M. Alexandre and P. Rigny, Can. J. Chem., 52, p. 3676 (1974).

    Article  Google Scholar 

  36. M. Rhodes, D. W. Aksnes, and J. H. Strange, Mol. Phys., 15, p. 541 (1968).

    Article  Google Scholar 

  37. J. M. Winter, Compt. Rend. Acad. Sci., Paris, 249, p. 1346 (1959).

    Google Scholar 

  38. J. H. Strange and R. E. Morgan, in “Magnetic Resonance and Radiofrequency Spectroscopy,” Proc. XVth Colloque Ampere, Grenoble 1968, P. Averbuch, Ed., Amsterdam, 1969.

    Google Scholar 

  39. R. R. Sharp, J. Chem. Phys., 57, p. 5321 (1972).

    Article  Google Scholar 

  40. R. R. Sharp, J. Chem. Phys., 60, p. 1149 (1974).

    Article  Google Scholar 

  41. R. M. Hawk and R. R Sharp, J. Chem. Phys., 60, p. 1009 (1974).

    Article  Google Scholar 

  42. S. Forsén, M. Gustavsson, B. Lindman, and N.-O. Persson, J. Magn. Reson., 23, p. 515 (1976).

    Google Scholar 

  43. W. C. Dickinson, Phys. Rev., 80, p. 563 (1950).

    Article  Google Scholar 

  44. R. A. Bonham and T. G. Stand, J. Chem. Phys., 40, p. 344 (1964).

    Google Scholar 

  45. J. McGurk, C. L. Norris, H. L. Tigelaar, and W. H. Flygare, J. Chem. Phys., 58, p. 3118 (1973).

    Article  Google Scholar 

  46. S. Rothenberg, R. H. Young, and H. F. Schaefer, III, J. Am. Chem. Soc., 92, p. 3243 (1970).

    Article  Google Scholar 

  47. T. D. Gierke and W. H. Flygare, J. Am. Chem. Soc., 94, p. 7277 (1972).

    Article  Google Scholar 

  48. N. F. Ramsey, Phys. Rev., 86, p. 243 (1952).

    Article  Google Scholar 

  49. W. H. Flygare, Chem. Rev., 74, p. 653 (1974).

    Article  Google Scholar 

  50. R. E. Davie and J. S. Muenter, J. Chem. Phys., 57, p. 2836 (1972).

    Article  Google Scholar 

  51. J. J. Ewing, H. L. Tigelaar, and W. H. Flygare, J. Chem. Phys., 56, p. 1957 (1972).

    Article  Google Scholar 

  52. E. W. Kaiser, J. Chem. Phys., 53, p. 1686 (1970).

    Article  Google Scholar 

  53. A. Abragam, “The Principles of Nuclear Magnetism,” London, Oxford University Press, 1964.

    Google Scholar 

  54. I. Solomon, Compt. Rend. hebd. Seance Acad. Sci., Paris, 249, p. 163k (1959).

    Google Scholar 

  55. R. E. Morgan and J. H. Strange, Mol. Phys., 17, p. 397 (1969).

    Article  Google Scholar 

  56. J. H. Strange and R. E. Morgan, J. Phys. C, Solid State Phys., 3, p. 1999 (1970).

    Article  Google Scholar 

  57. H. Weingärtner, C. Müller, and H. G. Hertz, J. Chem. Soc., Faraday 1, 75, p. 2712 (1979).

    Google Scholar 

  58. H. Wennerström, G. Lindblom, and B. Lindman, Chem. Scripta, 6, p. 97 (1974).

    Google Scholar 

  59. B. M. Fung, M. J. Gerace, and L. S. Gerace, J. Phys. Chem., 74, p. 83 (1979).

    Article  Google Scholar 

  60. G. Lindblom, N.-O. Persson, and B. Lindman, in “Chemie, physikalische Chemie und Anwendungstechnik der grenzflachenaktiven Stoffe,” Vol. II, Carl Hanser, München, 1972, p. 939.

    Google Scholar 

  61. G. Lindblom, B. Lindman, and L. Mandell, J. Coll. Interface Sci., 42, p. 400 (1973).

    Article  Google Scholar 

  62. T. E. Bull, J. Magn. Reson., 7, p. 344 (1972).

    Google Scholar 

  63. T. E. Bull, J. Andrasko, E. Chiancone, and S. Forsén, J. Mol. Biol., 73, p. 251 (1973).

    Article  Google Scholar 

  64. D. Beckert and H. Pfeifer, Ann. Phys., 7, p. 262 (1965).

    Article  Google Scholar 

  65. H. G. Hertz, Ber. Bunsenges. Phys. Chem., 71, p. 979 (1967).

    Google Scholar 

  66. A. G. Marshall, J. Chem. Phys., 52, p. 2527 (1970).

    Article  Google Scholar 

  67. S. Lindskog, L. E. Henderson, K. K. Kannan, A. Liljas, P. O. Nyman, and B. Strandberg, in “The Enzymes,” P. Boyer, Ed., 3d ed., Vol. V, Academic Press, New York, 1971, p. 587.

    Google Scholar 

  68. R. L. Ward, Biochemistry, 8, p. 1879 (1969).

    Article  Google Scholar 

  69. R. L. Ward and M. D. Cull, Arch. Biochem. Biophys., 150, p. 436 (1972).

    Article  Google Scholar 

  70. R. L. Ward and P. L. Whitney, Biochem. Biophys. Res. Commun., 51, p. 343 (1973).

    Article  Google Scholar 

  71. S. H. Koenig and R. D. Brown, III, Proc. Natl. Acad. Sci. (USA), 69, p. 2422 (1972).

    Article  Google Scholar 

  72. J. E. Norne, H. Lilja, B. Lindman, R. Einarsson, and M. Zeppezauer, Eur. J. Biochem., 59, p. 463 (1975).

    Article  Google Scholar 

  73. H. Eklund, B. Nordström, E. Zeppezauer, G. Soderlund, I. Ohlsson, T. Boiwe, and C.-I. Bränden, FEBS Lett., 44, p. 200 (1974).

    Article  Google Scholar 

  74. M. Zeppezauer, B. Lindman, S. Forsén, and I. Lindqvist, Biochem. Biophys. Res. Commun., 37, p. 137 (1969).

    Article  Google Scholar 

  75. R. L. Ward and J. A. Happe, Biochem. Biophys. Res. Commun., 45, p. 1444 (1971).

    Article  Google Scholar 

  76. R. L. Ward and M. D. Cull, Biochim. Biophys. Acta, 365, p. 281 (1974).

    Google Scholar 

  77. B. Lindman, M. Zeppezauer, and A. Åkeson, in “Structure and Function of Oxidation Reduction Enzymes,” A. Akesson and A. Ehrenberg, Eds., Pergamon Press, Oxford, 1972.

    Google Scholar 

  78. B. Lindman, M. Zeppezauer, and A. Akeson, Biochim. Biophys. Acta, 257, p. 173 (1972).

    Google Scholar 

  79. J. E. Norne, T. E. Bull, R. Einarsson, B. Lindman, and M. Zeppezauer, Chem. Scripta, 3, p. 142 (1973).

    Google Scholar 

  80. T. E. Bull, B. Lindman, R. Einarsson, and M. Zeppezauer, Biochim. Biophys. Acta, 377, p. 1 (1975).

    Google Scholar 

  81. I. Andersson, D. Katzberg, B. Lindman, and M. Zeppezauer in “Energetics and Structure of Halophilic Microorganisms,” S. R. Caplan and M. Ginzburg, Eds., Elsevier, Amsterdam, 1978.

    Google Scholar 

  82. I. Andersson, M. Zeppezauer, T. E. Bull, R. Einarsson, J. E. Norne, and B. Lindman, Biochemistry, 18, p. 3407 (1979).

    Article  Google Scholar 

  83. E. Chiancone, J. E. Norne, S. Forsén, M. Brounori, and E. Antonini, Biophys. Chem., 3, p. 56 (1975).

    Article  Google Scholar 

  84. H. C. Reynolds and J. S. McKinley-McKee, Eur. J. Biochem., 14, p. 14 (1970).

    Article  Google Scholar 

  85. E. Zeppezauer, H. Jörnvall, and I. Ohlsson, Eur. J. Biochem., 58, p. 95 (1975).

    Article  Google Scholar 

  86. M. F. Perutz, Nature, 228, p. 726 (1970).

    Article  Google Scholar 

  87. E. Antonini and M. Brunori, “Hemoglobin and Myoglobin in Their Interaction with Ligands,” North Holland, Amsterdam, 1971.

    Google Scholar 

  88. R. Benesch and R. E. Benesch, Nature, 221, p. 618 (1969).

    Article  Google Scholar 

  89. T. R. Collins, Z. Starcuk, A. H. Burr, and E. J. Wells, J. Am. Chem. Soc., 95, p. 1649 (1973).

    Article  Google Scholar 

  90. E. Chiancone, J. E. Norne, S. Forsén, E. Antonini, and J. Wyman, J. Mol. Biol., 70, p. 657 (1972).

    Google Scholar 

  91. E. Chiancone, J. E. Norne, J. Bonaventura, C. Bonaventura, and S. Forsén, Biochim. Biophys. Acta, 336, p. 403 (1974).

    Google Scholar 

  92. E. Chiancone, J. E. Norne, S. Forsén, J. Bonaventura, M. Brunori, E. Antonini, and J. Wyman, Eur. J. Biochem., 55, p. 385 (1975).

    Article  Google Scholar 

  93. E. Chiancone, J. E. Norne, S. Forsén, A. Mansouri, and K. Winterhalter, FEBS Lett., 63, p. 309 (1976).

    Article  Google Scholar 

  94. J. Wyman, Adv. Protein Chem., 4, p. 407 (1948).

    Article  Google Scholar 

  95. J. Wyman, Adv. Protein Chem., 19, p. 223 (1964).

    Article  Google Scholar 

  96. J. E. Norne, E. Chiancone, S. Forsén, E. Antonini, and J. Wyman, FEBS Lett., 94, p. 410 (1978).

    Article  Google Scholar 

  97. J. Monod, J. Wyman, and J. P. Changeux, J. Mol. Biol., 12, p. 88 (1965).

    Article  Google Scholar 

  98. S. J. Edeistein, Nature, 230, p. 224 (1971).

    Article  Google Scholar 

  99. S. J. Edeistein, Biochemistry, 13, p. 4998 (1974).

    Article  Google Scholar 

  100. R. Ogata and H. M. McConnell, Cold Spring Harbor Symp. Quant. Biol., 36, p. 325 (1971).

    Article  Google Scholar 

  101. J. A. McCammon, B. R. Gelin, and M. Karplus, Nature, 267, p. 585 (1977).

    Article  Google Scholar 

  102. T. E. Bull, J. Magn. Reson., 31, p. 453 (1978).

    Google Scholar 

  103. T. E. Bull, J. E. Norne, P. Reimarsson, and B. Lindman, J. Am. Chem. Soc., 100, p. 4643 (1978).

    Article  Google Scholar 

  104. M. H. Cohen and F. Reif, Solid State Phys., 5, p. 321 (1955).

    Article  Google Scholar 

  105. J. Bacon, R. J. Gillespie, and J. W. Quail, Can. J. Chem., 41, p. 3063 (1963).

    Article  Google Scholar 

  106. K. O. Christe, J. F. Hon, and D. Pilipovich, Inorg. Chem., 12, p. 84 (1973).

    Article  Google Scholar 

  107. R. J. Gillespie and G. J. Schrobilgen, J.C.S. Chem. Commun., p. 90 (1974).

    Google Scholar 

  108. M. Brownstein and H. Selig, Inorg. Chem., 11, p. 656 (1972).

    Article  Google Scholar 

  109. R. J. Gillespie and J. W. Quail, Can. J. Chem., 42, p. 2671 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 D. Reidel Publishing Company

About this chapter

Cite this chapter

Drakenberg, T., Forsén, S. (1983). The Halogens—Chlorine, Bromine, and Iodine. In: Lambert, J.B., Riddell, F.G. (eds) The Multinuclear Approach to NMR Spectroscopy. NATO ASI Series, vol 103. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7130-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7130-1_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7132-5

  • Online ISBN: 978-94-009-7130-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics