Handbook of Philosophical Logic pp 189-274

Part of the Synthese Library book series (SYLI, volume 164) | Cite as

Alternatives to Standard First-Order Semantics

  • Hugues Leblanc


Alternatives to standard semantics are legion, some even antedating standard semantics. I shall study several here, among them: substitutional semantics, truth-value semantics, and probabilistic semantics. All three interpret the quantifiers substitutionally, i.e. all three rate a universal (an existential) quantification true if, and only if, every one (at least one) of its substitution instances is true.2 As a result, the first, which retains models, retains only those which are to be called Henkin models. The other two dispense with models entirely, truth-value semantics using instead truth-value assignments (or equivalents thereof to be called truth-value functions) and probabilistic semantics using probability functions. So reference, central to standard semantics, is no concern at all of truth-value and probabilistic semantics; and truth, also central to standard semantics, is but a marginal concern of probabilistic semantics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, E.W.: 1981, ‘Transmissible improbabilities and marginal essentialness of premises in inferences involving indicative conditionals’, J. Philosophical Logic 10, 149–178.Google Scholar
  2. Barnes, R. F., Jr. and Gumb, R.D.: 1979, ‘The completeness of presupposition-free tense logics’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 25, 192–208.CrossRefGoogle Scholar
  3. Behmann, H.: 1922, ‘Beiträge zur Algebra der Logik, in besondere zum Entscheidungs-problem’, Math. Annalen 86, 163–229.CrossRefGoogle Scholar
  4. Bendall, K.: 1979, ‘Belief-theoretic formal semantics for first-order logic and probability’, J. Philosophical Logic 8, 375–394.Google Scholar
  5. Bendall, K.: 1982, ‘A “definitive” probabilistic semantics for first-order logic’, J. Philosophical Logic 11, 255–278.CrossRefGoogle Scholar
  6. Bergmann, M., Moore, J., and Nelson, R.: 1980, The Logic Book, Random House, New York.Google Scholar
  7. Bernays, P.: 1922, Review of Behmann [1922], Jahrbuch über die Fortschritte der Mathematik 48, 1119.Google Scholar
  8. Beth, E. W.: 1959, The Foundations of Mathematics, North-Holland, Amsterdam.Google Scholar
  9. Carnap, R.: 1942, Introduction to Semantics, Harvard University Press, Cambridge, Mass.Google Scholar
  10. Carnap, R.: 1950, Logical Foundations of Probability, University of Chicago Press, Chicago, Ill.Google Scholar
  11. Carnap, R.: 1952, The Continuum of Inductive Methods, University of Chicago Press, Chicago, Ill.Google Scholar
  12. Carnap, R. and Jeffrey, R. C.: 1971, Studies in Inductive Logic and Probability, Volume I, University of California Press, Berkeley and Los Angeles, Ca.Google Scholar
  13. De Finetti, B.: 1937, ‘La prévision: Ses lois logiques, ses sources subjectives’, Annales de l’Institut Henri Poincaré 7, 1–68.Google Scholar
  14. Dunn, J. M. and Belnap, N. D., Jr.: 1968, ‘The substitution interpretation of the quantifiers’, Noûs 2, 177–185.CrossRefGoogle Scholar
  15. Ellis, B.: 1979, Rational Belief Systems, APQ Library of Philosophy, Rowman and Littlefield, Totowa, N.J.Google Scholar
  16. Field, H. H.: 1977, ‘Logic, meaning, and conceptual role’, J. Philosophy 74, 379–409.CrossRefGoogle Scholar
  17. Fitch, F. B.: 1948, ‘Intuitionistic modal logic with quantifiers’, Portugaliae Mathematica 7, 113–118.Google Scholar
  18. Frege, G.: 1879, Begriffschrift, Halle.Google Scholar
  19. Frege, G.: 1893–1903, Grundgesetze der Arithmetik, Jena.Google Scholar
  20. Gaifman, H.: 1964, ‘Concerning measures on first-order calculi’, Israel J. Math. 2, 1–18.CrossRefGoogle Scholar
  21. Garson, J.W.: 1979, ‘The substitution interpretation and the expressive power of intensional logics’, Notre Dame J. Formal Logic 20, 858–864.CrossRefGoogle Scholar
  22. Gentzen, G.: 1934–35, ‘Untersuchungen über das logische Schliessen’, Mathematische Zeitschrift 39, 176–210,405–431.CrossRefGoogle Scholar
  23. Goldfarb, W. D.: 1979, ‘Logic in the Twenties: the nature of the quantifier’, J. Symbolic Logic 44, 351–68.CrossRefGoogle Scholar
  24. Gottlieb, D. and McCarthy, T.: 1979, ‘Substitutional quantification and set theory’, J. Philosophical Logic 8, 315–331.Google Scholar
  25. Gumb, R. D.: 1978, ‘Metaphor theory’, Reports on Math. Logic 10, 51–60.Google Scholar
  26. Gumb, R. D.: 1979, Evolving Theories, Haven Publishing, New York.Google Scholar
  27. Gumb, R. D.: 1983, ‘Comments on probabilistic semantics’, in Leblanc et al. [1983].Google Scholar
  28. Harper, W. L.: 1974, ‘Counterfactuals and representations of rational belief’, doctoral dissertation, University of Rochester.Google Scholar
  29. Harper, W. L.: 1983, ‘A conditional belief semantics for free quantificational logic with identity’, in Leblanc et al. [1983].Google Scholar
  30. Harper, W. L., Leblanc, H. and Van Fraassen, B. C.: 1983, ‘On characterizing Popper and Carnap probability functions’, in Leblanc et al. [1983],Google Scholar
  31. Hasenjaeger, G.: 1953, ‘Eine Bemerkung zu Henkin’s Beweis für die Vollständigkeit des Prädikatenkalküls der ersten Stufe’, J. Symbolic Logic 18, 42–48.CrossRefGoogle Scholar
  32. Henkin, L.: 1949, ‘The completeness of the first-order functional calculus’, J. Symbolic Logic 14, 159–166.CrossRefGoogle Scholar
  33. Hintikka, J.: 1955, Two Papers on Symbolic Logic, Acta Philosophica Fennica 8.Google Scholar
  34. Huntington, E. V.: 1933, ‘New sets of independent postulates for the algebra of logic’, Transactions of the American Mathematical Society 35, 274–304.Google Scholar
  35. Jeffrey, R. C.: 1967, Formal Logic: Its Scope and Limits, McGraw-Hill, New York.Google Scholar
  36. Jeffreys, H.: 1939, Theory of Probability, Oxford University Press, London.Google Scholar
  37. Kearns, J.T.: 1978, ‘Three substitution-instance interpretations’, Notre Dame J. Formal Logic 19, 331–354.CrossRefGoogle Scholar
  38. Keynes, J. M.: 1921, A Treatise on Probability, Macmillan, London.Google Scholar
  39. Kolmogorov, A. N.: 1933, Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin.Google Scholar
  40. Kripke, S.: 1976, ‘Is there a problem about substitutional quantification?’ in G. Evans and J. McDowell (eds.), Truth and Meaning, Clarendon Press, Oxford, 325–419.Google Scholar
  41. Leblanc, H.: 1960, ‘On requirements for conditional probability functions’, J. Symbolic Logic 25, 171–175.CrossRefGoogle Scholar
  42. Leblanc, H.: 1966, Techniques of Deductive Inference, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  43. Leblanc, H.: 1968, ‘A simplified account of validity and implication for quantificational logic’, J. Symbolic Logic 33, 231–235.CrossRefGoogle Scholar
  44. Leblanc, H.: 1973, Truth, Syntax and Modality, North-Holland, Amsterdam.Google Scholar
  45. Leblanc, H.: 1976, Truth-Value Semantics, North-Holland, Amsterdam.Google Scholar
  46. Leblanc, H.: 1979a, ‘Generalization in first-order logic’, Notre Dame J. of Formal Logic 20, 835–857.CrossRefGoogle Scholar
  47. Leblanc, H.: 1979b, ‘Probabilistic semantics for first-order logic’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 25, 497–509.CrossRefGoogle Scholar
  48. Leblanc, H.: 1981, ‘What price substitutivity? A note on probability theory’, Philosophy of Science 48, 317–322.CrossRefGoogle Scholar
  49. Leblanc, H.: 1982a, ‘Free intuitionistic logic: A formal sketch’, in J. Agassi and R. Cohen (eds), Scientific Philosophy Today: Essays in Honor of Mario Bunge, D. Reidel, Dordrecht, pp. 133–145.Google Scholar
  50. Leblanc, H.: 1982b, Existence, Truth, and Provability, SUNY Press, Albany, N.Y.Google Scholar
  51. Leblanc, H.: 1982c, ‘Popper’s 1955 axiomatization of absolute probability’, Pacific Philosophical Quarterly 63, 133–145.Google Scholar
  52. Leblanc, H.: 1983, ‘Probability functions and their assumption sets: The singulary case’, J. Philosophical Logic 12.Google Scholar
  53. Leblanc, H.: forthcoming, ‘Of consistency trees and model sets’.Google Scholar
  54. Leblanc, H. and Gumb, R. D.: 1983. D.: 1983, ‘Soundness and completeness proofs for three brands of intuitionistic logic’, in Leblanc et al. [1983].Google Scholar
  55. Leblanc, H., Gumb, R. D. and Stern, R. (eds.): 1983, Essays in Epistemology and Semantics, Haven Publishing, New York.Google Scholar
  56. Leblanc, H. and Morgan, C. G.: forthcoming, ‘Probability functions and their assumption sets: The binary case’, Synthèse.Google Scholar
  57. Leblanc, H. and Wisdom, W. A.: 1972, Deductive Logic, Allyn & Bacon, Boston, Mass.Google Scholar
  58. Löwenheim, L.: 1915, ‘Uber Möglichkeiten im Relativkalkul’, Mathematischen Annalen 76, 447–470.CrossRefGoogle Scholar
  59. Marcus, R. B.: 1963, ‘Modal logics I: Modalities and international languages’, in M. W. Wartofsky (ed.), Proceedings of the Boston Colloquium for the Philosophy of Science, 1961–1962, D. Reidel, Dordrecht.Google Scholar
  60. McArthur, R. P.: 1976, Tense Logic, D. Reidel, Dordrecht.Google Scholar
  61. McArthur, R. P. and Leblanc, H.: 1976, ‘A completeness result for quantificational tense logic’, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 22, 89–96.CrossRefGoogle Scholar
  62. Moore, G. E.: 1959, Philosophical Papers, Allen and Unwin, London.Google Scholar
  63. Morgan, C. G.: 1982a, ‘There is a probabilistic semantics for every extension of classical sentence logic’, J. Philosophical Logic 11, 431–442.Google Scholar
  64. Morgan, C. G.: 1982b, ‘Simple probabilistic semantics for propositional K, T, B, S4, and S5’, J. Philosophical Logic 11, 443–458.Google Scholar
  65. Morgan, C. G.: 1983, ‘Probabilistic semantics for propositional modal logics’, in Leblanc et al. [1983].Google Scholar
  66. Morgan, C. G. and Leblanc, H.: 1983a, ‘Probabilistic semantics for intuitionistic logic’, Notre Dame J. Formal Logic 23, 161–180.CrossRefGoogle Scholar
  67. Morgan, C. G. and Leblanc, H.: 1983b, ‘Probability theory, intuitionism, semantics and the Dutch Book argument’, Notre Dame J. Formal Logic 24, 289–304.CrossRefGoogle Scholar
  68. Morgan, C. G. and Leblanc, H.: 1983c, ‘Satisfiability in probabilistic semantics’, in Leblanc et al. [1983].Google Scholar
  69. Orenstein, A.: 1979, Existence and the Particular Quantifier, Temple University Press, Philadelphia, Pa.Google Scholar
  70. Parsons, C.: 1971, ‘A plea for substitutional quantification’, J. Philosophy 68, 231–237.CrossRefGoogle Scholar
  71. Popper, K. R.: 1955, ‘Two autonomous axiom systems for the calculus of probabilities’, British J. Philosophy of Science 6, 51–57, 176, 351.CrossRefGoogle Scholar
  72. Popper, K. R.: 1957, ‘Philosophy of science: a personal report’, in A. C. Mace (ed.), British Philosophy in Mid-Century, Allen and Unwin, London, pp. 155–191.Google Scholar
  73. Popper, K. R.: 1959, The Logic of Scientific Discovery, Basic Books, New York.Google Scholar
  74. Quine, W. V.: 1940, Mathematical Logic, Norton, New York.Google Scholar
  75. Quine, W. V.: 1969, Ontological Relativity and Other Essays, Columbia University Press, New York and London.Google Scholar
  76. Ramsey, F. P.: 1926a, ‘The foundations of mathematics’, Proceedings of the London Mathematical Society, Series 2, 25, 338–384.CrossRefGoogle Scholar
  77. Ramsey, F. P.: 1926b, ‘Mathematical Logic’, The Mathematical Gazette 13, 185–194.CrossRefGoogle Scholar
  78. Reichenbach, R.: 1935, Wahrscheinlichkeitslehre, Leiden.Google Scholar
  79. Rényi, A.: 1955, ‘On a new axiomatic theory of probability’, Acta Mathematica Acad. Scient. Hungaricae 6, 285–335.CrossRefGoogle Scholar
  80. Robinson, A.: 1951, On the Mathematics of Algebra, North-Holland, Amsterdam.Google Scholar
  81. Rosser, J. B.: 1953, Logic for Mathematicians, McGraw Hill, New York.Google Scholar
  82. Schotch, P. K. and Jennings, R. E.: 1981, ‘Probabilistic considerations on modal semantics’, Notre Dame J. Formal Logic 22, 227–238.CrossRefGoogle Scholar
  83. Schütte, K.: 1960, ‘Syntactical and semantical properties of simple type theory’, J. Symbolic Logic 25, 305–326.CrossRefGoogle Scholar
  84. Schütte, K.: 1962, Lecture Notes in Mathematical Logic, Volume I, Pennsylvania State University.Google Scholar
  85. Seager, W.: 1983, ‘Probabilistic semantics, identity and belief’, Canadian J. Philosophy, 12.Google Scholar
  86. Shoenfield, J. R.: 1967, Mathematical Logic, Addison-Wesley, Reading, Mass.Google Scholar
  87. Skolem, T. A.: 1920, ‘Logisch-Kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen’, Skrifter utgit av Videnskapsselkapet i Kristiania, I. Mathematisk-naturvidenskabelig klasse 1920, no. 4, 1–36.Google Scholar
  88. Smullyan, R. M.: 1968, First-Order Logic, Springer-Verlag, New York.Google Scholar
  89. Stalnaker, R.: 1970, ‘Probability and conditionals’, Philosophy of Science 37, 64–80.CrossRefGoogle Scholar
  90. Stevenson, L.: 1973, ‘Frege’s two definitions of quantification’, Philosophical Quarterly 23, 207–223.CrossRefGoogle Scholar
  91. Tarski, A.: 1930, ‘Fundamentale Begriffe der Methodologie der deductiven Wissenschaften. I’, Monatshefte für Mathematik und Physik 37, 361–404.CrossRefGoogle Scholar
  92. Tarski, A.: 1935–36, ‘Grundzüge des Systemkalkül’, Fundamenta Math. 25, 503–526, 26, 283–301.Google Scholar
  93. Tarski, A.: 1936, ‘Der Wahrheitsbegriff in den formalisierten Sprachen’, Studia Philosophica 1, 261–405.Google Scholar
  94. Thomason, R. H.: 1965, ‘Studies in the formal logic of quantification’, doctoral dissertation, Yale University.Google Scholar
  95. Van Fraassen, B. C.: 1981, ‘Probabilistic semantics objectified‘, J. Philosophical Logic 10, 371–394, 495–510.CrossRefGoogle Scholar
  96. Van Fraassen, B. C.: 1982, ‘Quantification as an act of mind’, J. Philosophical Logic 11, 343–369.CrossRefGoogle Scholar
  97. Von Wright, G. R.: 1957, The Logical Problem of Induction, 2nd revised edition, Macmillan, New York.Google Scholar
  98. Whitehead, A. N. and Russell, B.: 1910–13, Principia Mathematica, Cambridge University Press, Cambridge.Google Scholar
  99. Wittgenstein, L.: 1921, Tractatus Logico-Philosphicus (= Logisch-philosophische Abhandlung), Annalen der Naturphilosophie 14, 185–262.Google Scholar

Copyright information

© D. Reidel Publishing Company 1983

Authors and Affiliations

  • Hugues Leblanc
    • 1
  1. 1.Temple UniversityUSA

Personalised recommendations