Skip to main content

Special Relativity from Measuring Rods

  • Chapter
Book cover Physics, Philosophy and Psychoanalysis

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 76))

Abstract

The mathematical structures associated with a space-time theory, such as the special theory of relativity (SRT) — or the general theory (GRT) for that matter — are numerous and interrelated in complex ways.1 One may start their analysis with the concept of a point set, the elements of which are identified with events in space-time.2 Imposing a continuity structure on this set leads to the concept of space-time as a four-dimensional topological manifold. Restriction to a differentiable structure then leads to the concept of space-time as a differentiable manifold. Various additional mathematical structures may now be introduced on this manifold: projective, affine, conformal and pseudo-metrical (a metrical structure with Minkowski signature). Each of these mathematical structures is closely associated with the behavior of some idealized physical entity in space-time. The projective structure is associated with the trajectories of structureless free test particles. If each particle carries some intrinsic measure of duration along its trajectory, it reflects the affine structure. The conformal structure is associated with the wave fronts of massless fields, such as the electromagnetic. A pseudo-metrical structure with Minkowski signature implies the existence of two fundamentally distinct types of interval which cannot be transformed into one another by any operation of the symmetry group defining the geometry (the inhomo- geneous Lorentz group for SRT).3 These two distinct types of interval are called spacelike and timelike, and physically quite distinct entities — measuring rods and clocks — are associated with their respective measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berzi, V. and Gorini, V. 1969. ‘Reciprocity Principle and the Lorentz Transformations,’ J. Math Phys. 10, 1518–1524.

    Article  Google Scholar 

  • Carter, B. and Quintana, H. 1972. ‘Foundations of General Relativistic High-Pressure Elasticity Theory,’Proc. Roy. Soc. Lond. A 331, 57–83.

    Article  Google Scholar 

  • Dixon, W. G. 1978. Special Relativity: The Foundation of Macroscopic Physics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Dorling, J. 1976. ‘Special Relativity Out of Euclidean Geometry,’ unpublished.

    Google Scholar 

  • Ehlers, J. 1973a. ‘The Nature and Structure of Spacetime.’ In J. Mehra (ed.), The Physicist’s Conception of Nature, pp. 71–91. Dordrecht and Boston: D. Reidel.

    Google Scholar 

  • Ehlers, J. 1973b. ‘Survey of General Relativity Theory.’ In W. Israel (ed.), Relativity, Astrophysics and Cosmology, pp. 1–125. Dordrecht: D. Reidel.

    Google Scholar 

  • Ehlers, J., Pirani, F. A. E., and Schild, A. 1972. The Geometry of Free Fall and Light Propagation.’ In L. O’Raifeartaigh (ed.), General Relativity. Oxford: Clarendon Press.

    Google Scholar 

  • Einstein, A. 1905. Zur Elektrodynamik bewegter Körper,Ann. Phys. 17, 891–921.

    Article  Google Scholar 

  • Einstein, A. 1911. ‘Zum Ehrenfestchen Paradoxon,’Physik. Zeitschr.12, 509–510.

    Google Scholar 

  • Einstein, A. 1954. ‘What Is the Theory of Relativity?’ In his Ideas and Opinions, pp. 227–232. New York: Crown.

    Google Scholar 

  • Einstein, A. 1979. Autobiographical Notes: A Centennial Edition. LaSalle/Chicago: Open Court.

    Google Scholar 

  • Feenberg, E. 1979. ‘Distant Synchrony and the One-Way Velocity of Light,’ Found, Phys. 9, 329–337.

    Article  Google Scholar 

  • Frank, P. and Rothe, H. 1911. Ueber die Transformation der Raumzeitkoordinaten von ruhenden auf bewegte System. Ann. der Phys. 34, 825–855.

    Article  Google Scholar 

  • Herglotz, G. 1911. Ueber die Mechanik des deformierbaren Korpers vom Standpunkte der Relativitatstheorie,Ann. Phys. 36, 493–533.

    Article  Google Scholar 

  • Ignatowsky, W. 1910. ‘Einige allgemeine Bemerkungen zum Relativitatsprinzip,’ Physik, Zeitschr. 10, 972–975.

    Google Scholar 

  • Jammer, M. 1979. ‘Some Foundational Problems in the Special Theory of Relativity.’ In G. Toraldo di Francia (ed.), Problems in the Foundations of Physics, pp. 202–236. Amsterdam/New York/Oxford: North-Holland.

    Google Scholar 

  • Lee, A. R. and Kalotas, T. M. 1975. ‘Lorentz Transformations from the First Postulate,’ Am. J. Phys. 43, 434–437.

    Article  Google Scholar 

  • Lévy-Leblond, J. M. 1976. ‘One More Derivation of the Lorentz Transformation,’ Am. J. Phys. 44, 271–277.

    Article  Google Scholar 

  • Minkowski, H. 1909. Raum und Zeit. Leipzig/Berlin: B. G. Teubner.

    Google Scholar 

  • Pauli, W. 1958. Theory of Relativity. New York: Pergamon.

    Google Scholar 

  • Pfarr, J. (ed.). 1981. Protophysik und Relativitatstheorie. Mannheim/Vienna/Zurich: B. I. Wissenschaftsverlag.

    Google Scholar 

  • Poincaré, H. 1887. ‘Sur les hypothèses fondamentales de la géometric,’ Bull. Soc. Math. France 15, 203–216.

    Google Scholar 

  • Poincaré, H. 1952. ‘Non-Euclidean Geometries.’ In his Science and Hypothesis, pp. 35–50. New York: Dover.

    Google Scholar 

  • Robb, A. A. 1914. A Theory of Time and Space. Cambridge: Cambridge University Press.

    Google Scholar 

  • Robb, A. A. 1921. The Absolute Relations of Time and Space. Cambridge: Cambridge University Press.

    Google Scholar 

  • Robb, A. A. 1936. The Geometry of Space and Time. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schwartz, H. M. 1962. ‘Axiomatic Deduction of the General Lorentz Transformations,’ Am. J. Phys. 30, 697–707.

    Article  Google Scholar 

  • Soper, D. E. 1976. Classical Field Theory. New York: Wiley-Interscience.

    Google Scholar 

  • Süssmann, G. 1969. ‘Begründung der Lorentz-Gruppe mit Symmetrie-und Relativitats-Annahmen,’ Zeitschr. Naturf. 24a, 495–498.

    Google Scholar 

  • Synge, J. L. 1960. Relativity: The General Theory. Amsterdam: North-Holland.

    Google Scholar 

  • Synge, J. L. 1964. Relativity: The Special Theory. 2nd ed. Amsterdam: North-Holland.

    Google Scholar 

  • Weyl, H. 1923. Mathematische Analyse des Raumproblems. Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 D. Reidel Publishing Company

About this chapter

Cite this chapter

Stachel, J. (1983). Special Relativity from Measuring Rods. In: Cohen, R.S., Laudan, L. (eds) Physics, Philosophy and Psychoanalysis. Boston Studies in the Philosophy of Science, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7055-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7055-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7057-1

  • Online ISBN: 978-94-009-7055-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics