State Estimation Using Microprocessors for Process Supervision and Control

  • Andrea Holmberg
  • Jussi Orava
Part of the International Series on Microprocessor-Based Systems Engineering book series (ISCA, volume 1)


Microprocessor-based state estimation in connection with process supervision and control is treated in this article. The state-of-the-art is briefly analysed on the basis of a literature survey, which confirms that very few on-line applications exist. The most commonly used state estimation algorithms, i.e. the Luenberger type observer, the Kalman-Bucy filter, the extended Kalman filter, as well as a nonlinear extension especially suitable for on-line computation, are reviewed with some comments concerning their applicibility to microprocessor-based process control. Applications concerning on-line state estimation of the activated sludge waste water treatment process and a pH control process are introduced.


Activate Sludge State Estimation Extended Kalman Filter Nonlinear Filter State Estimation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bryson A.E. and Ho Y.–C.: 1969,Applied optimal control, Gins. and company.Google Scholar
  2. Ciceharella G., De Carli A. and Verrocchi P.: 1980,IFAC Conf. on Application of microprocessors in devices for instrumentation and automatic control, London, England, Nov. 18–20, 1980. Instr. Meas & Control, London, England, pp. 137–147.Google Scholar
  3. Control and Dynamic Systems. Advances in theory and application. Vol. 12, 1976, ed. C.T. Leondes.Google Scholar
  4. Halme A.: 1980, In O.L.R. Jacobs, N.H.A. Davis, M.A.H. Dempster, C.J. Harris and P.C. Parks (ed.)Analysis and Optimization of Stochastic Systems. Academic Press, New York, pp. 373–385.Google Scholar
  5. Halme A. and Selkäinaho J.: 1981.20th IEEE Conf. on Decision and Control, San Diego, California, Dec. 16 –185 19815 pp. 71–73.Google Scholar
  6. Holmberg A.: 1981, Int. J. Systems Sci. 12, pp. 703–718.zbMATHCrossRefGoogle Scholar
  7. Holmberg A.: 1982, Water Research, 16, pp. 1233–1246.CrossRefGoogle Scholar
  8. Holmberg A. and Ranta J.: 1982, Automatica 18, pp. 181–193.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Jazwinski A.: 1970,Stochastic processes and filtering theory, Academic Press, New York and London.zbMATHGoogle Scholar
  10. Jutila P. and Orava P.J.: 1981, Int. J. Systems Sci, 12, pp. 855–875.CrossRefGoogle Scholar
  11. Kalman R.E. : 1960, Trans ASME, J. Basic Eng., Vol. 82 D, pp. 35–45Google Scholar
  12. Kalman R.E. and Bucy R.S.: 1961, Trans. ASME J. Basic Eng., Vol. 183 D, PP. 95–108.MathSciNetGoogle Scholar
  13. Katz P. : 1981,Digital Control Using Microprocessors, Prentice Hall.Google Scholar
  14. Kwakernaak H. and Sivan R.: 1972,Linear Optimal Control Systems, Wiley — Interscience.Google Scholar
  15. Luenberger D.G. : 1964, IEEE Trans. Mil. Electron., Vol. MIL-8, pp. 74–80.CrossRefGoogle Scholar
  16. Luenberger D.G. : 1971, IEEE Trans. Aut. Control, Vol. AC-16, No. 6, PP. 596–602.MathSciNetCrossRefGoogle Scholar
  17. Mendel J.M.: 1971, IEEE Trans. Aut. Control, i.jol. AC–16, No. 6, pp. 748–758.CrossRefGoogle Scholar
  18. Nihtilä M. and Jutila P.: 1982, In preprints ofSymposium on Application of Multivariable Systems Theory 26.–28. October, 1982, Plymouth, UK.Google Scholar
  19. Sinha N.K., Law S.S.Y. and Li M.H.: 1981, IEEE Trans. Ind. Electr. Contr. Instr. Vol. IECI —28, No. 2, pp. 136–140.CrossRefGoogle Scholar
  20. Thau F.E.: 1973, Int. J. Control, 17, pp. 471–479.zbMATHCrossRefGoogle Scholar
  21. Wilson T.: 1980, Eurochem 80, 24–26 June, Bingham, England.Google Scholar

Copyright information

© D. Reidel Publishing Company 1983

Authors and Affiliations

  • Andrea Holmberg
    • 1
  • Jussi Orava
    • 1
  1. 1.Systems Theory LaboratoryHelsinki University of TechnologyEspoo 15Finland

Personalised recommendations