Skip to main content

Modelling the Oceanic CO2 Uptake and Future CO2 Levels

  • Chapter
Carbon Dioxide

Abstract

In 1978, Siegenthaler and Oeschger summarized several predictions about future atmospheric carbon dioxide levels. The authors concluded that of the cumulative inputs one hundred years ahead, between 46 % and 80 % would remain in the atmosphere. One of the causes for the wide range was the uncertainty about which was the most realistic model used in the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacastow, R. and A. Björkström, 1981: Comparison of ocean models for the carbon cycle. In: B. Bolin (ed.) Carbon Cycle Modelling (SCOPE 16), 29–79, John Wiley and Sons, Chichester.

    Google Scholar 

  • Bacastow, R., and C.D. Keeling, 1981: Atmospheric carbon dioxide concentration and the observed airborne fraction. In B. Bolin (ed.) Carbon Cycle Modelling (SCOPE 16), 103–112, John Wiley and Sons, Chichester.

    Google Scholar 

  • Björkström, A., 1979: A model of CO2 interaction between atmosphere, oceans and land biota. In B. Bolin, E.T. Degens, S. Kempe and P. Ketner (eds.) The Global Carbon Cycle (SCOPE 13), 403–457, John Wiley and Sons, Chichester.

    Google Scholar 

  • Bolin, B., and H. Rodhe, 1973: A note on the concepts of age distribution and transit time in natural reservoirs. Tellus 25, 58–62.

    Google Scholar 

  • Bolin, B., 1975: A critical appraisal of models for the carbon cycle. In The Physical Basis of Climate and Climate Modelling, GARP Publ. Ser. No. 16.

    Google Scholar 

  • Bolin, B., C.D. Keeling, R.B. Bacastow, A. Björkström and U. Siegenthaler, 1981: Carbon cycle modelling. In B. Bolin (ed.) Carbon Cycle Modelling (SCOPE 16), 1–28, John Wiley and Sons, Chichester.

    Google Scholar 

  • Bolin, B., A. Björkström, K. Holmén, and B. Moore, 1983: The simultaneous use of tracers for ocean circulation studies. Tellus (in press).

    Google Scholar 

  • Broecker, W.S., Y.H. Liu and T.-H. Peng, 1971: Carbon dioxide: Man’s unseen artifact. In D.W. Hood (ed.) Impingement of Man on the Oceans, 287–324. John Wiley and Sons, New York.

    Google Scholar 

  • Broecker, W.S., 1979: A revised estimate for the radiocarbon age of North Atlantic deep water. J. Geophys. Res. 84, 3218–3226.

    Article  Google Scholar 

  • Broecker, W.S., and T.-H. Peng, 1981: A strategy for the development of an improved model for the uptake of fossil fuel CO2 by the ocean. In B. Bolin (ed.) Carbon Cycle Modelling (SCOPE 16), 223–226. John Wiley and Sons, Chichester.

    Google Scholar 

  • Craig, H., 1957: The natural distribution of radiocarbon and the exchange time of carbon dioxide between the atmosphere and the sea. Tellus 9, 1–17.

    Google Scholar 

  • Craig, H., 1963: The natural distribution of radiocarbon: Mixing rates in the sea and residence times of carbon and water. In J. Geiss and E.D. Goldberg (eds.) Earth Science and Meteorites. (F.J. Houterman Volume), 103–114. North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Crane, A.J., 1982: The partitioning of excess CO2 in a five-reservoir atmosphere-ocean model. Tellus 34, 398–405.

    Google Scholar 

  • Eriksson, E., 1961: Natural reservoirs and their characteristics. Geofis. Internacional 1, 27–43.

    Google Scholar 

  • Gordon, A.L., 1971: Oceanography at Antarctic waters. Antarctic Res. Series 15, 169–203. Am. Geoph. Union. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Hoffert, M.I., A.J. Callegari, and C.-T. Hsieh, 1981: A box-diffusion carbon cycle model with upwelling, polar bottom water formation, and a marine biosphere. In B. Bolin (ed.) Carbon Cycle Modelling (SCOPE 16), 287–305. John Wiley and Sons, Chichester.

    Google Scholar 

  • Keeling, C.D., 1973a: The carbon dioxide cycle. Reservoir models to depict the exchange of atmospheric carbon dioxide with the oceans and land plants. In: Rasool, S., (ed.) Chemistry of the Lower Atmosphere, 251–329. Plenum Press, New York.

    Google Scholar 

  • Keeling, C.D., 1973b: Industrial production of carbon dioxide from fossil fuels and limestone. Tellus 25, 174–198.

    Google Scholar 

  • Keeling, C.D., and R.B. Bacastow, 1977: Impact of industrial gases on climate. In Energy and Climate, 72–95. Geophysics Study Committee, Geophysics Research Board, National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Killough, G.G., and W.R. Emanuel, 1981: A comparison of several models of carbon turnover in the ocean with respect to their distributions of transit time and age, and responses to atmospheric CO2 and 14C. Tellus 33, 274–290.

    Google Scholar 

  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res. 13, 707–730.

    Google Scholar 

  • Oeschger, H., U. Siegenthaler, U. Schotterer, and A. Gugelmann, 1975: A box-diffusion model to study the carbon dioxide exchange in nature. Tellus 27, 168–192.

    Google Scholar 

  • Perry, H., and H.H. Landsberg, 1977: Projected world energy consumption. In Energy and Climate, 35–50. Geophysics Study Committee, Geophysics Research Board, National Academy of Sciences, Washington, D.C.

    Google Scholar 

  • Rotty, R.M., 1981: Data for global CO2 production from fossil fuels and cement. In B. Bolin (ed.) Carbon Cycle Modelling (SCOPE 16), 121–125. John Wiley and Sons, Chichester.

    Google Scholar 

  • Siegenthaler, U., and H. Oeschger, 1978: Predicting future atmospheric carbon dioxide levels. Science 199, 388–395.

    Article  Google Scholar 

  • Siegenthaler, U., 1983: Uptake of excess CO2 by an outcrop-diffusion model of the ocean. J. Geophys. Res, (in press).

    Google Scholar 

  • Stuiver, M., and H.G. Östlund, 1980: GEOSECS Atlantic radiocarbon. Radiocarbon 22, 1–24.

    Google Scholar 

  • Stuiver, M., and P.D. Quay, 1981: Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth and Planet. Sci. Lett. 53, 349–362.

    Article  Google Scholar 

  • Stuiver, M., H.G. Östlund and T.A. McConnaughey, 1981: GEOSECS Atlantic and Pacific 14C distributions. In B. Bolin (ed.) Carbon Cycle Modelling (SCOPE 16), 201–222. John Wiley and Sons, Chichester.

    Google Scholar 

  • Takahashi, T., W.S. Broecker and A.E. Bainbridge, 1981: Supplement to the alkalinity and total carbon dioxide concentrations in the world oceans. In B. Bolin (ed.) Carbon Cycle Modelling (SCOPE 16), 159–199. John Wiley and Sons, Chichester.

    Google Scholar 

  • Viecelli, J.A., H.W. Ellsaesser and J.E. Burt, 1981: A carbon cycle model with latitude dependance. Climatic change 3, 281–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 D. Reidel Publishing Company

About this chapter

Cite this chapter

Björkström, A. (1983). Modelling the Oceanic CO2 Uptake and Future CO2 Levels. In: Bach, W., Crane, A.J., Berger, A.L., Longhetto, A. (eds) Carbon Dioxide. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6998-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6998-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7000-7

  • Online ISBN: 978-94-009-6998-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics