Skip to main content

The Froth Flotation Process:Past,Present and Future-In Brief

  • Chapter
The Scientific Basis of Flotation

Part of the book series: NATO ASI Series ((NSSE,volume 75))

Abstract

It is not easy to convey, in a few words, the enormous importance of the froth flotation process to the economy of the whole industrial world. It may suffice, for the present article, to quote rough estimates of the quantity of crushed ore which is treated annually by flotation — 2 x 109 tonnes — and the proportion of base-metals nowadays won by this process — 95%. Certainly, without flotation many familiar metals and inorganic raw materials would be exceedingly scarce and costly; for the high-grade ores, which could be processed by simple physical and mechanical methods, have long since been used up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The early history of flotation can be traced in the following books:-

    Google Scholar 

  2. Hoover, T.J. Concentrating Ores by Flotation. Mining Magazine, London, 1912.

    Google Scholar 

  3. Rickard, T.A. (Edit.) The Flotation Process. Mining and Scientific Press, San Francisco, 1916.

    Google Scholar 

  4. Rickard, T.A.(Edit.) Concentration by Flotation. Wiley and Sons, New York, 1921.

    Google Scholar 

  5. Fuerstenau, D.W. (Edit.) Froth Flotation: 50th Anniversary Volume. Amer.Inst. Min. Met Pet. Engrs. New York, 1962.

    Google Scholar 

  6. Woodward, O.H. A Review of the Broken Hill Lead-Silver-Zinc Industry. Australasian Inst. Min. Met., Melbourne, 1952.

    Google Scholar 

  7. Schulze, H.J. Physikalisch-chemische Elementvorgange des Flotationsprozesses. VEB Deutscher Verlag der Wissenschaften, Berlin, D.D.R. 1981.

    Google Scholar 

  8. Sorensen, E. On the adsorption of some anionic collectors on minerals. J.Coll.Int.Sci., 45, 601–607, 1973.

    Article  CAS  Google Scholar 

  9. Lemlich, R. (Edit.) Adsorptive Bubble Separation Techniques. Academic Press, New York, 1972.

    Google Scholar 

  10. Trahar, W.J. A Rational interpretation of the role of particle size flotation. Int. J.Min.Proc. 8, 289–232. 1981.

    Article  CAS  Google Scholar 

  11. Read, A.D. and Manser, R.M. Residual flotation reagents: problems in effluent disposal and watter-recycle. Proc.13th Int.Min.Proc.Congress (Cagliari) 1975, 1323–1344.

    Google Scholar 

  12. Collins, G.L. and Jameson, G.J. Experiments on flotation of fine particles, Chem.Engng. Sci. 31, 985–991, 1976.

    Article  CAS  Google Scholar 

  13. Kitchener, J.A. and Gochin, R.J. The mechanism of dissolved air flotation. Water Research, 15, 585 - 590, 1981.

    Article  Google Scholar 

  14. Melville, J.B. and Marijevic, E. Micro-bubbles: generation and interaction with colloid particles, in Akers, R.J. (Edit.) Foams, Academic Press, London, 1976.

    Google Scholar 

  15. Scott,J.C. The role of salt in whitecap persistence. Deep-Sea Research, 22, 653–675, 1975.

    Google Scholar 

  16. Pearson,D. and Shirley, J.M. Precipitate flotation in the treatment of metal-bearing effluents. J. Appl, Chem. Biotechnol. 23, 101–109.

    Google Scholar 

  17. Solari, J.and Gochin, R.J.to be published cf. Solari, J.Selective dissolved air flotation of fine mineral particles, PhD, thesis Univ. London, 1980.

    Google Scholar 

  18. Bratby, J. and Marais, G.V.R. Flotation, in Purchas, D.B. (Edit.) Solid-liquid Separation Equipment Scale-up. Uplands Press, Croydon, England, 1977 (deals with dissolved air flotation).

    Google Scholar 

  19. Derjaguin, B.V. and Dukhin, S.S. Kinetic theory of the flotation of fine particles. Proc. 13th Int. Min.Proc.Congress (Warsaw). Elsevier, Amsterdam, 1981, pp. 21–62.

    Google Scholar 

  20. Laskowski, J.and Kitchener, J.A. The hydrophilic-hydrophobic transition on silica. J.Coll.Int.Sci. 29, 670–679, 1969.

    Article  CAS  Google Scholar 

  21. Hough, D.B. and White, L.R. Calculation of Hamaker constants from lifshitz theory with applications to wetting phenomena. Adv.Coll. Int. Sci., 14, 3–41, 1980.

    Article  CAS  Google Scholar 

  22. Scheludko, A., Toshev, B. and Bogadiev, B. Attachment of particles to a liquid surface. J.Chem.Soc.Faraday Trans. I., 72, 2815–2828, 1976.

    Article  CAS  Google Scholar 

  23. Anfruns, J.F. and Kitchener, J.A. Rate of capture of small particles in flotation. Trans.Instn.Min.Metal., C, 86, 9–15, 1977.

    CAS  Google Scholar 

  24. Blake, T.D. and Kitchener, J.A. Stability of aqueous films on hydrophobic methylated silica. J.Chem.Soc.Faraday Trans., 68, 1435–1442, 1972.

    Article  CAS  Google Scholar 

  25. Collins, G.L. and Jameson, G.J. Double-layer effects in the flotation of fine particles. Chem.Eng.Sci., 32, 239–246, 1977.

    Article  CAS  Google Scholar 

  26. Laskowski, J. Particle-bubble attachment in flotation. Minerals Sci.Engng., 6, 223–235. 1974.

    Google Scholar 

  27. Trahar, W.J. and Warren, L.J. The flotability of very fine particles — a review. Int.J.Mineral Sci., 3, 103–131, 1976.

    Article  CAS  Google Scholar 

  28. Jameson, G.J., Nam, S. and Young, M.M. Physical factors affecting recovery rates in flotation. Minerals Sci.Engng., 9, 103–118, 1977.

    Google Scholar 

  29. Woods, R . Electrochemistry of sulfide flotation, in Fuerstenau, M.C.(Edit.) flotation: A.M.Gaudin Memorial Volume, A.I.M.M.P.E., New York, 1976, pp. 299–333.

    Google Scholar 

  30. Hornsby, D. and Leja, J. Selective Flotation and its surface chemical characteristics in Surface of Colloid Science, Edit, Matijevic, E. vol.12, Plenum Publ., New York,1982.

    Google Scholar 

  31. Westall, J. and Hohl, H.A. comparison of electrostatic models for the oxide/solution interface. Adv.Coll.Int. Sci., 12, 265–294, 1980.

    Article  CAS  Google Scholar 

  32. Bragg, L. and Claringbull, G.F. Crystal Chemistry of Minerals. Bell and Sons, London, 1965.

    Google Scholar 

  33. Stumm, W. and Morgan, J.J. Aquatic Chemistry. 2nd edn., John Wiley and Sons, New York, 1981.

    Google Scholar 

  34. Leja, J. Surface Chemistry in Flotation. Plenum, New York, 1982.

    Google Scholar 

  35. Du Rietz, C . Chemisorption of collectors in flotation. Proc.13th Int.Min.Proc.Congr.(Cagliari), 1975, 375–403.

    Google Scholar 

  36. Poling, G.W. Reactions between thiol reagents and sulfide minerals, in Fuerstenau, M.C.(Edit.) loc.Cit.Ref. 24, pp. 334–357.

    Google Scholar 

  37. Scamehorn, J.F., Schechter, R.S. and Wade, W.H. Adsorption of surfactants on mineral oxide surfaces from aqueous solutions. J.Coll.Interface Sci., 85, 463–478, 1982.

    Article  CAS  Google Scholar 

  38. See Ch. 3,5,6,7 in Fuerstenau, M.C.(Edit.) loc.cit.Ref.24.

    Google Scholar 

  39. Manser, R.M. Handbook of Silicate Flotation. Warren Spring Laboratory, Stevenage, Herts, 1975.

    Google Scholar 

  40. Hanna, H.S. and Somarsundaran, P. Ch.8 in Fuerstenau,M.C. (Edit.) loc.cit.Ref.24. pp. 197. 272.

    Google Scholar 

  41. Atademir, M.R. Kitchener, J.A. and Sherfold, H.L. The surface chemistry and flotation of scheelite. II Flotation collectors. Int.J.Mineral Proc., 8, 9–16, 1981.

    Article  CAS  Google Scholar 

  42. For examples -

    Google Scholar 

  43. Jewkes, J., Sawers, D. and Stillerman, R, The Sources of Invention. Macmillan, London, 2nd edn., 1969.

    Google Scholar 

  44. Kingston, W. Innovation: The Creative Impulse in Human Progress. John Calder, London, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Kitchener, J.A. (1984). The Froth Flotation Process:Past,Present and Future-In Brief. In: Ives, K.J. (eds) The Scientific Basis of Flotation. NATO ASI Series, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6926-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6926-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6928-5

  • Online ISBN: 978-94-009-6926-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics