Skip to main content

The Effects of Stress on Photosynthesis

  • Chapter
Effects of Stress on Photosynthesis

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 3))

Abstract

There are five main environmental factors which may limit the growth of plants through effects on the photosynthetic apparatus; these are light, temperature, water, nutrients and carbon dioxide. None of these factors affect photosynthesis uniquely, so that the stress response which we observe in a whole plant is usually an integral of effects on many of the facets of metabolism, of which photosynthesis is just one. It is also evident that over a wide range of habitats, factors such as high temperature and water stress may often be correlated; when this happens interpretation of the plant response may be a very complicated problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tranquillini W. 1964. The physiology of plants at high altitudes. Ann. Rev. Plant Physiol. 15, 345–62.

    Article  CAS  Google Scholar 

  2. Long S.J., Incoll L.D. and Woolhouse H.W. 1975. C4 photosynthesis in plants from cool temperate regions with particular reference to Spartina townsendii. Nature 257, 622–4.

    Article  CAS  Google Scholar 

  3. Scott D. 1970. CO2 exchange in plants III. Temperature acclimatisation of three species. N.Z. Journal Bot. 8, 369–379.

    Google Scholar 

  4. Taylor A.O. and Rowley J.A. 1971. Plants under climatic stress I. Low temperatures, high light effects on photosynthesis. Plant Physiol. 47, 713–18.

    Article  PubMed  CAS  Google Scholar 

  5. Berry J.A. and Bjorkman O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Ann. Rev. Plant Physiol. 31, 491–543.

    Article  Google Scholar 

  6. Bjorkman O., Troughton J. and Berry J.A. 1976. Comparison of the heat stability of photosynthesis, chloroplast membrane reactions, photosynthetic enzymes and soluble protein in leaves of heat-adapted and cold-adapted C4 species. Carnegie Inst. Washington Yearbook. 75, 400–7.

    Google Scholar 

  7. Pearcy R.W., Berry J.A. and Fork D.A. 1977. Effect of growth temperature on the thermal stability of the photosynthetic apparatus of Atriplex lentiformis (Torr) Wats. Plant Physiol. 59, 873–78.

    Article  PubMed  CAS  Google Scholar 

  8. Redshaw A.J. and Meidner H. 1972. Effects of water stress on resistance to the uptake of carbon dioxide in tobacco. J.Exp.Bot. 23, 229–40.

    Article  Google Scholar 

  9. Cowan I.R. 1977. Stomatal behaviour and environment. Adv. Bot. Res., 4, 117–228.

    Article  Google Scholar 

  10. Lawlor D.W. 1976. Water stress induced changes in photosynthesis, photorespiration, respiration and CO2 compensation concentration of wheat. Photosynthetica 10, 378–87.

    CAS  Google Scholar 

  11. Lawlor D.W. and Hock H. 1975. Photosynthesis and photorespiratory CO2 evolution of water stressed sunflower leaves. Planta. 126, 247–238.

    Article  CAS  Google Scholar 

  12. Plaut Z. 1971. Inhibition of photosynthetic carbon dioxide fixation in isolated spinach chloroplasts exposed to reduced osmotic potentials. Plant Physiol. 48, 591–95.

    Article  PubMed  CAS  Google Scholar 

  13. Kaiser W.M. 1982. Correlation between changes in photosynthetic activity and changes in total protoplast volume in leaf tissue from hygro-, meso- and xerophytes under osmotic stress. Planta 154, 538–45.

    Article  CAS  Google Scholar 

  14. Warburg O. 1920. Uber die Geschwindigbeit der photochemischen Kohlensauezersetung in lebenden Zellen.II. Biochem. Zeit. 100, 188–217.

    Google Scholar 

  15. Ogren W.L. and Bowes, G. 1971. Ribulose diphosphate carboxylase regulates soybean photorespiration. Nature New Biol. 230, 159–60.

    PubMed  CAS  Google Scholar 

  16. Bowes G., Ogren, W.L. and Hageman R.H. 1971. Phosphoglycolate production catalysed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Comm. 45, 716–22.

    Article  PubMed  CAS  Google Scholar 

  17. Bowes G. and Ogren W.L. 1972. Oxygen inhibition and other properties of soybean ribulose, 1,5-diphosphate carboxylase. J. Biol. Chem. 247, 2171–76.

    PubMed  CAS  Google Scholar 

  18. Goldsworthy A. 1970. Photorespiration. Bot. Rev. 36, 321–340.

    Article  CAS  Google Scholar 

  19. Jackson W.A. and Volk R.J. 1970. Photorespiration. Ann. Rev. Plant.Physiol. 21, 385–432.

    Article  CAS  Google Scholar 

  20. Lorimer G.H. and Andrews T.J. 1980. The C-2 photo- and photo-respiratory carbon oxidation cycle. In: The Biochemistry of Plants, ed. M.D. Hatch, N.K. Boardman, 8, 329–74. New York Acad. Press.

    Google Scholar 

  21. Buchanan B.B. 1980. Role of light in the regulation of chloroplast enzymes. Ann. Rev. Plant Physiol. 31, 341–74.

    Article  CAS  Google Scholar 

  22. Farquhar G.D. and Sharkey T.D. 1982. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. 33, 317–45.

    Article  CAS  Google Scholar 

  23. von Caemmerer and Farquhar G.D. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153, 376–87.

    Article  Google Scholar 

  24. Drake B. and Raschke K. 1974. Prechilling of Xanthium strumarium L. reduces net photosynthesis and independently of stomatal conductance while sensitising stomata to CO2. Plant Physiol. 53, 308–12.

    Article  Google Scholar 

  25. Linden C.D., Wright K.L., McConnell H.M. and Fox C.F. 1973. Lateral phase separations in membrane lipids and the mechanism of sugar transport in Escherichia coli. Proc. Natl. Acad. Sci. USA 70, 2271–75.

    Article  PubMed  CAS  Google Scholar 

  26. Raison J.K. 1980. Membrane lipids-structure and function. Biochemistry of Plants 7, ed. P.K. Stumpf. New York Acad. Press.

    Google Scholar 

  27. Nobel P.S. 1974. Temperature dependence of the permeability of chloroplasts from chilling-sensitive and chilling-resistant plants. Planta. 115, 369–72.

    Article  CAS  Google Scholar 

  28. Murata N., Troughton J.H. and Fork D.C. 1975. Relationships between the transition of the physical phase of membrane lipids and photosynthetic parameters in Anacystis nidulans and lettuce and spinach chloroplasts. Plant Physiol. 56, 508–17.

    Article  PubMed  CAS  Google Scholar 

  29. Hackenbrock C.R. 1981. Lateral diffusion and electron transfer in the mitochondrial inner membrane. Trends Biochem. Sci. 4, 151–154.

    Article  Google Scholar 

  30. Schreiber N. and Berry J.A. 1977. Heat induced changes of chlorophyll fluorescence in intact leaves, correlated with damage of the photosynthetic apparatus. Planta, 136, 233–38.

    Article  CAS  Google Scholar 

  31. Broyer J.S. and Bowen B.L. 1970. Inhibition of oxygen evolution in chloroplasts isolated from leaves with low water potentials. Plant Physiol. 43, 612–15.

    Article  Google Scholar 

  32. Jones H.G. 1973. Limiting factors in photosynthesis. New Phytol. 72, 1089–94.

    Article  Google Scholar 

  33. Moharty P. and Broyer J.S. 1976. Chloroplast response to low leaf water potentials. Quantum yield is reduced. Plant Physiol. 57, 704–9.

    Article  Google Scholar 

  34. Keck R.W. and Broyer J.S. 1974. Chloroplast response to low leaf water potentials III. Differing inhibition of electron transport and photophosphorylation. Plant Physiol. 53, 474–79.

    Article  PubMed  CAS  Google Scholar 

  35. Shirahaski K., Hayakawa S. and Sugiyama T. 1978. Cold Lability of pyruvateorthophosphate dikinase in the maize leaf. Plant Physiol. 62, 826–830.

    Article  Google Scholar 

  36. Sugiyama T., Schmitt M.K., Ku S.B. and Edwards G.E. 1979. Differences in cold lability of pyruvate, Pi dikinase among C4 species. Plant Cell Physiol. 20, 965–71.

    CAS  Google Scholar 

  37. O’Tool J.C., Crookston R.K., Treharne K.J. and Ozbun J.L. (1976) Mesophyll resistance and carboxylase activity. A comparison under water stress conditions. Plant Physiol 57, 465–68.

    Article  Google Scholar 

  38. Lewontin R.C. 1977. Adaptation. In: The Encyclopaedia Einaudi, Torino Giulio Einaudi Edition.

    Google Scholar 

  39. Woolhouse H.W. 1981. Aspects of the carbon and energy requirements of photosynthesis considered in relation to environmental constraints. In: Physiological Ecology an Evolutionary Approach, ed. P. Calow and C.R. Townsend. Pub. Sinauer Assos. U.S.A. 51–85.

    Google Scholar 

  40. Slack C.R., Roughan P.G. and Basset H.C.M. 1974. Selective inhibition of mesophyll chloroplast development in some C4 pathway species by low night temperature. Planta 118, 57–73.

    Article  CAS  Google Scholar 

  41. Seemann J.R., Downton W.J.S. and Berry J.A. 1980. Field studies of acclimation to high temperatures: Winter ephemerals in Death Valley. Carnegie Institute Washington Yearbook. 78, 157–62.

    Google Scholar 

  42. Lloyd N.D.H. and Woolhouse H.W. 1978. Leaf resistances in different populations of Sesleria caerulea (L.) Ard.

    Google Scholar 

  43. Teeri J.A. and Stowe L.G. 1976. Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23, 1–12.

    Google Scholar 

  44. Stowe L.G. and Teeri J.A. 1978. The geographic distribution of C4 species of the Dicotyledons in relation to climate. Amer. Natur., 112, 609–23.

    Article  Google Scholar 

  45. Caldwell M.M., White R.S., Moore R.T. and Camp L.B. 1977. Carbon balance, productivity and water use of cold desert shrub communities dominated by C3 and C4 species. Oecologia 29, 275–300.

    Article  Google Scholar 

  46. Winter. 1981. C4 plants of high biomass in arid regions of Asia -occurrence of C4 photosynthesis in Chenopodiaceae and Polygonaceae from the Middle East and USSR. Decologia 48, 100–106.

    Google Scholar 

  47. Ehleringer J.R. 1978. Implications of quantum yield differences on the distribution of C3 and C4 grasses. Oecologia 31, 255–67.

    Article  Google Scholar 

  48. Winter K., Schmitt M.R., and Edwards, G.E. 1982. Microstegia vimineum, a shade adapted C4 grass. Plant. Sci. Lett. 24, 311–18.

    Article  Google Scholar 

  49. Robichaux R.H. and Pearcy R.W. 1980. Photosynthetic responses of C3 and C4 species from cool shaded habitats in Hawaii. Oecologia. 47, 106–109.

    Article  Google Scholar 

  50. Ward D. and Woolhouse H.W. Unpublished.

    Google Scholar 

  51. Jones M.B., Hannon G.E. and Coffey M.D. 1982. C4 photosynthesis in Cyperus longus L., a species occurring in temperate climates. Plant Cell and Environment. 4, 161–68.

    Article  Google Scholar 

  52. Long S.P. and Woolhouse H.W. (1978) The responses of net photosynthesis to vapour pressure deficit and CO2 concentration in Spartina x townsendii (Sensuo lato) J.Exp. Bot. 29, 567–77.

    Article  CAS  Google Scholar 

  53. Long S.P. and Woolhouse H.W. (1978). The responses of net photosynthesis to light and temperature in Spartina x townsendii (Sensuo lato) J. Exp. Bot. 29, 803–14.

    Article  Google Scholar 

  54. Long S.P. and Woolhouse H.W. (1979). Primary production of Spartina marshes. Proceedings of the 1st European Ecological Symposium. Ed. R.L. Jefferies and A.J. Davey. Blackwell Scientific Publications, Oxford, p.p. 333–352.

    Google Scholar 

  55. Long S.P. and Incoll L.D. 1979. The prediction and measurement of photosynthetic rate of Spartina x townsendii (Sensuo Lato) in the field. J. AppL. Ecol. 16, 879–91.

    Article  CAS  Google Scholar 

  56. Woolhouse H.W. 1980. Possibilities for the modification of the pattern of photosynthetic assimilation of CO2 in relation to growth and yield of crops. Proc. 15th Int. Potash. Inst. Colloquium. Wageningen 1.

    Google Scholar 

  57. Ranwell D.S. 1972. Ecology of Salt Marshes and Sand Dunes. 258pp. Chapman and Hall, London.

    Google Scholar 

  58. Hatch M.D. 1979. Mechanism of C4 photosynthesis in Chloris gayana: pool sizes and kinetics of 14CO2 incorporation into 4-carbon and 3-carbon intermediates. Arch. Biochem. Biophys. 194, 117–127.

    Article  PubMed  CAS  Google Scholar 

  59. Hatch M.D. and Kagawa T. 1976. Photosynthetic activities of isolated bundle sheath cells in relation to differing mechanisms of C4 pathway photosynthesis. Arch. Biochem. Biophys. 175, 39–53.

    Article  PubMed  CAS  Google Scholar 

  60. Rathnam C.K.M. and Edwards G.E. 1977. C4 dicarboxylic acid decarboxylation in bundle sheath chloroplasts, mitochondria and strands of Eriochloa borumensis Hack., a phosphoenolpyruvate-carboxykinase type C4 species. Planta 133, 135–44.

    Article  CAS  Google Scholar 

  61. Cockburn W. 1981. The evolutionary relationship between stomatal mechanism, crassulacean acid metabolism and C4 photosynthesis: Opinion. Plant, Cell and Environment. 4, 417–418.

    Article  CAS  Google Scholar 

  62. Rashke K. 1975. Stomatal action. Ann. Rev. Plant Physiol. 26, 309–340.

    Article  Google Scholar 

  63. Jewer P.C. and Incoll L.D. 1981. Promotion of stomatal opening in detached epidermis of Kalanchoe daigremontiana. Hornet et Perr. by natural and synthetic cytokinins. Planta. 153, 317–318.

    Article  CAS  Google Scholar 

  64. Soundararajan M. and Smith B.N. 1982. Localisation of ribulose biphosphate carboxylase in the guard cells by an indirect immunofluorescence technique. Plant Physiol. 69, 273–277.

    Article  Google Scholar 

  65. Rathnam C.K.M. and Chollet R. 1979. Photosynthetic carbon metabolism in Panicum milioides, a C3-C4 intermediate species. Evidence for a limited C4 dicarboxylic acid pathway of photosynthesis. Biochem. Biophys. Acta. 548, 500–519.

    Article  PubMed  CAS  Google Scholar 

  66. Sayre R.T. and Kennedy R.A. 1977. Ecotypic differences in the C3 and C4 photosynthetic activity in Mollugo verticillata, a C3-C4 intermediate. Planta. 134, 257–262.

    Article  CAS  Google Scholar 

  67. Apel P. 1980. CO2 compensation concentration and its O2 dependence in Moricandia spinosa and Moricandia moricandioides (Cruciferae) Biochem. Physiol. Pflazen. 175, 386–388.

    Google Scholar 

  68. Hattersley P.W., Watson L. and Johnston C.R. Remarkable leaf anatomical variations in Neurachne and its allies (Poaceae) in relation to C3 and C4 photosynthesis.

    Google Scholar 

  69. Ellis R.P. 1974. The significance of the occurrence of both Kranz and non-Kranz leaf anatomy in the grass species Alloteropsis semialata. S. Afr. J. Sci. 70, 169–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff/Dr W. Junk Publishers, The Hague

About this chapter

Cite this chapter

Woolhouse, H.W. (1983). The Effects of Stress on Photosynthesis. In: Marcelle, R., Clijsters, H., van Poucke, M. (eds) Effects of Stress on Photosynthesis. Advances in Agricultural Biotechnology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6813-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6813-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6815-8

  • Online ISBN: 978-94-009-6813-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics