Skip to main content

Role of the Slow Inward Current in the Genesis of Cardiac Arrhythmias

  • Chapter
Frontiers of Cardiac Electrophysiology

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 19))

  • 120 Accesses

Abstract

Hodgkin and Katz[l] demonstrated that a large and relatively specific increase in the membrane permeability to sodium ions accounted for the amplitude and rate of voltage change of the depolarization phase of squid nerve action potentials. Using the voltage-clamp technique, Hodgkin and Huxley [2] analyzed the currents underlying the nerve action potential. They described two constituents — an inward sodium flow followed by an outward potassium flow — and formulated equations to describe how these currents vary with transmembrane voltage potential and time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hodgkin AL, Katz B: Ionic current underlying activity in the giant axon of the squid. J Physiol (London) 108:37, 1949.

    CAS  Google Scholar 

  2. Hodgkin AL, Huxley AF: A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 117:500, 1952.

    CAS  Google Scholar 

  3. Noble D: A modification of the Hodgkin-Huxley equations to Purkinje fibre action and pacemaker potentials. (London). 160:317, 1962.

    CAS  Google Scholar 

  4. Coraboeuf E, Otsuka M: L’action des solutions hyposodiques sur les potentials cellulaires de tissu cardiaque de mammiferes. C R Acad Sci 243:441, 1956.

    CAS  Google Scholar 

  5. Weidmann S: Electrophysiology. Ann Rev Physiol. 36:155, 1974.

    Article  CAS  Google Scholar 

  6. Trautwein W: Membrane currents in cardiac muscle fibers. Physiol Rev 53:793, 1973.

    Google Scholar 

  7. Reuter H: Divalent cations as charge carriers in excitable membranes. Prog Biophs Mol Biol. 26:1, 1973.

    Article  CAS  Google Scholar 

  8. Cranefield PF: The conduction of the cardiac impulse. Futura, Mt. Kisco, NY, 1975.

    Google Scholar 

  9. Zipes DP, Bailey JC, Elharrar V: The Slow Inward Current and Cardiac Arrhythmias. Martinus Nijhoff, The Hague, pp 1–521, 1980.

    Google Scholar 

  10. Niedergerke R, Orkand RK: The dependence of the action potential of the frog’s heart on the external and intracellular sodium concentration. J Physiol (London). 184:312, 1966.

    CAS  Google Scholar 

  11. Hagiwara S, Nakajima A: Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine and manganese ions. J Gen Physiol 49:793, 1966.

    Article  PubMed  CAS  Google Scholar 

  12. Reuter H: The dependence of slow inward current in Purkinje fibres on the extracellular calcium concentration. J Physiol (London) 192:479, 1967.

    CAS  Google Scholar 

  13. Engstfeld G, Antoni H, Fleckenstein A: Die Restitution der Erregungsfortleitung und Kon- traktionskraft des K+-gelahmten Frosch und Saugertiermyokards durch Adrenalin. Pflueg Arch 273:145, 1961.

    Article  CAS  Google Scholar 

  14. Carmeliet E, Vereecke J: Adrenaline and the plateau phase of the cardiac action potential. Importance of Ca+ +, Na+ and K+ conductance. Pflueg Arch 313:300, 1961.

    Article  Google Scholar 

  15. Narahashi T, Moore JW, Scott W: Tetrodotoxin blockade of sodium conductances increase in lobster giant axons. J Gen Physiol 47:965, 1964.

    Article  PubMed  CAS  Google Scholar 

  16. Pappano AJ: Calcium-dependent action potentials produced by catecholamines in guinea pig atrial muscle fibers depolarized by potassium. Circ Res 27:379, 1970.

    PubMed  CAS  Google Scholar 

  17. Thyrum P: Inotropic stimuli and systolic transmembrane calcium flow in depolarized guinea pig atria. J Pharmacol Exp Ther 188:166, 1974.

    PubMed  CAS  Google Scholar 

  18. Watanabe AM, Besch HR Jr: Cyclic adenosin monophosphate modulation of slow calcium influx channels in guinea pig hearts. Circ Res 35:316, 1974.

    CAS  Google Scholar 

  19. Watanabe AM, Besch HR Jr: Subcellular myocardial effects of verapamil and D600: Comparison with propranolol. J Pharm Exper Ther 191:241, 1974.

    CAS  Google Scholar 

  20. Cranefield PF, Hoffman BF: Conduction of the cardiac impulse: Summation and inhibition. Circ Res 28:220, 1971.

    PubMed  CAS  Google Scholar 

  21. Cranefield PF, Wit AL, Hoffman BF: Conduction of the cardiac impulse III. Characteristics of very slow conduction. J Gen Physiol 59:227, 1972.

    Article  PubMed  CAS  Google Scholar 

  22. Fleckenstein A: Specific inhibitors and promoters of calcium action in the excitation- contraction coupling of heart muscle and their role in the prevention or production of myocardial lesions. In: Calcium and the Heart. Academic Press. New York, 1971.

    Google Scholar 

  23. Antman EM, Stone PH, Mueller JE, Braunwald E: Calcium channel blocking agents in the treatment of cardiovascular disorders. Ann Intern Med 93:875, 1980.

    PubMed  CAS  Google Scholar 

  24. Zipes DP, Mendez C: Action of manganese ions and tetrodoxin on AV nodal transmembrane potentials in isolated rabbit hearts. Circ Res 32:447, 1973.

    PubMed  CAS  Google Scholar 

  25. Garvey HL: The mechanism of action of verapamil on the sinus and AV nodes. Eur J Pharmacol 8:159, 1969.

    Article  PubMed  CAS  Google Scholar 

  26. Zipes DP, Fischer JC: Effects of agents which inhibit the slow channel on sinus node automaticity and atrioventricular conduction in the dog. Circ Res 34:184, 1974.

    PubMed  CAS  Google Scholar 

  27. Wit AL, Cranefield PF: Effect of verapamil on the sinoatrial and atrioventricular nodes of the rabbit and the mechanism by which it arrests reentrant atrioventricular nodal tachycardia. Circ Res 35:413, 1974.

    PubMed  CAS  Google Scholar 

  28. Brichard G, Zimmerman PE: Verapamil and cardiac dysrhythmias during anesthesia. Br J Anaesth 42:1005, 1970.

    Article  PubMed  CAS  Google Scholar 

  29. Zipes DP, Besch HR Jr, Watanabe AM: Role of the slow current in cardiac electrophysio- logy. Circulation 51:761, 1975.

    PubMed  CAS  Google Scholar 

  30. Wellens HJJ, Tan SL, Bar FWH, Durrer DR, Lie KI, Dohmen HM: Effect of verapamil studied by programmed electrical stimulation of the heart in patients with paroxysmal reentrant supraventricular tachycardia. Br Heart J 39:1058, 1977.

    Article  PubMed  CAS  Google Scholar 

  31. Rinkenberger RL, Zipes DP, Troup PJ, Jackman WM, Prystowsky EN: Clinical and electrophysiologic effects of intravenous and oral verapamil in patients with supraventricular tachyarrhythmias. Circulation 62:996, 1980.

    PubMed  CAS  Google Scholar 

  32. Schamroth L, Krikler DM, Garrett C: Immediate effects of intravenous verapamil in cardiac arrhythmias. Br Med J 1:660, 1972.

    Article  PubMed  CAS  Google Scholar 

  33. Gotsman MS, Louis BS, Bakst A, Mitha AS: Verapamil in life-threatening tachyarrhythmias. S Afr Med J 46:2017, 1972.

    PubMed  CAS  Google Scholar 

  34. Gomes J AC, Dhatt MS, Rubenson DS, Damato AN: Electrophysiologic evidence for selective retrograde utilization of a specialized conducting system in atrioventricular nodal reentrant tachycardia. Am J Cardiol 43:687, 1979.

    Article  PubMed  CAS  Google Scholar 

  35. Sung RJ, Elser B, McCallister RG: Intravenous verapamil for termination of reentrant supraventricular tachycardia. Ann Intern Med 93:682, 1980.

    PubMed  CAS  Google Scholar 

  36. Gallagher JJ, Pritchett ELC, Sealy WC, Casell J, Wallace AG: The preexcitation syndromes. Prog Cardiovasc Dis 20:285, 1978.

    Article  PubMed  CAS  Google Scholar 

  37. Prystowsky EN, Pritchett ELC, Smith WM, Wallace AG, Sealy WC, Gallagher JJ: Electrophysiologic assessment of the atrioventricular conduction system after surgical correction of ventricular preexcitation. Circulation 59:789, 1979.

    PubMed  CAS  Google Scholar 

  38. Han J, Malozzi AM, Moe GK: Sinoatrial reciprocation in the isolated rabbit heart. Circ Res 22:355, 1968.

    PubMed  CAS  Google Scholar 

  39. Childers RW, Arnsdorf MF, deLafuente D, Gambeta M, Svenson R: Sinus node reentry: Clinical case report and canine studies. Am J Cardiol 31:220, 1973.

    Article  PubMed  CAS  Google Scholar 

  40. Narula OS: A mechanism for supraventricular tachycardia. Circulation 50:1114, 1974.

    PubMed  CAS  Google Scholar 

  41. Wu D, Amat-y-Leon F, Denes P, Dhiugra RC, Pietras RJ, Rosen KM: Demonstration of sustained sinus and atrial reentry as a mechanism of paroxysmal supraventricular tachycardia. Circulation 51:234, 1975.

    PubMed  CAS  Google Scholar 

  42. Weisfogel GM, Batsford WP, Paulay KL, Josephson ME, Ogunkelu JB, Akhtar M, Seibes SF, Damato AN: Sinus node reentrant tachycardia in man. Am Heart J 90:295, 1975.

    Article  PubMed  CAS  Google Scholar 

  43. Curry PVL, Krikler DM: Paroxysmal reciprocating sinus tachycardia. In: Reentrant Arrhythmias. University Park Press, Baltimore, pp 39–62, 1977.

    Google Scholar 

  44. Allessi MA, Bonke FIM: Direct demonstration of sinus node reentry in the rabbit heart. Circ Res 44:557, 1979.

    Google Scholar 

  45. Mangiardil M, Hariman RJ, McAllister RG, Bhargava V, Surawicz B, Shabetai R: Electrophysiologic and hemodynamic effects of verapamil. Correlation with plasma drug concentrations. Circulation 57:366, 1978.

    Google Scholar 

  46. Carrasco HA, Fuenmayor A, Barboza JS, Gonzalez G: Effect of verapamil on normal sinoatrial node function and on sick sinus syndrome. Am Heart J 96:760, 1978.

    Article  PubMed  CAS  Google Scholar 

  47. Breithardt G, Seipel L, Wiebringhaus E: Dual effect of verapamil on sinus node function in man. In: The Sinus Node, Bonke FIM, ed. pp 129–138. Martinus Nijhoff, The Hague, 1978.

    Chapter  Google Scholar 

  48. Allessie AM, Bonke FIM, Schoman FJG: Circus movement in rabbit atrial muscle as in mechanism of tachycardia. Circ Res 33:54, 1973.

    PubMed  CAS  Google Scholar 

  49. Allessie MA, Bonke FIM, Schopman FJG: Circus movement in rabbit atrial muscle as a mechanism of tachycardia. The role of nonuniform excitability in the occurrence of unidirectional block, as studied with multiple microelectrodes. Circ Res 39:168, 1976.

    PubMed  CAS  Google Scholar 

  50. Allessie MA, Bonke FIM, Schopman FJG: Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The ‘leading circle’ concept: A new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res 41:9, 1977.

    PubMed  CAS  Google Scholar 

  51. Boineau JP, Mooney CR, Hudson RD, Hughes DG, Erdin RA Jr, Wilds AC: Observations on reentrant excitation pathways and the refractory period distributions in spontaneous and experimental atrial flutter in the dog. In: Reentrant Arrhythmias, Kulbertus HE, ed. pp 72–98, University Park Press, Baltimore, 1977.

    Google Scholar 

  52. Wu D, Denes P, Bauernfein R, Kehoe R, Amat-y-Leon F, Rosen KM: Effects of procainamide on atrioventricular nodal reentrant paroxysmal tachycardia. Circulation 57:1171, 1978.

    Google Scholar 

  53. Coumel P, Flammang D, Attuel P, Leckercq JF: Sustained intraatrial reentrant tachycardia. Electrophysiologic study of 20 cases. Clin Cardiol 2:176, 1979.

    Google Scholar 

  54. Allessie MA, Bonke FIM, Lammers WJEP: The effects of carbamylcholine, adrenaline, ouabain, quinidine and verapamil on circus movement tachycardia in isolated segments of rabbit atrial myocardium. In: Reentrant Arrhythmias, Kulbertus HE, ed. pp 63–71, University Park Press, Baltimore, 1977.

    Google Scholar 

  55. Paes de Carvalho A, de Mello WC, Hoffman BF: Electrophysiologic evidence for specialized fiber types in rabbit atrium. Am J Physiol 196:483, 1959.

    Google Scholar 

  56. Hogan PM, Davis LD: Electrophysiological characteristics of canine atrial plateau fibers. Circ Res 28:62, 1971.

    PubMed  CAS  Google Scholar 

  57. Makarycheu VA, Kosharskaya IL, Ulyninsky LS: Automatic activity of the pacemaker cells of the atrioventricular valves in the rabbit heart. Biull Eksp Biol Med. 81:646, 1976.

    Article  Google Scholar 

  58. Bassett AL, Fenoglios JJ Jr, Wit AL, Myerburg RJ, Gelband H: Electrophysiological and ultra structural characteristics of the canine tricuspid valve. Am J Physiol 230:1366, 1976.

    PubMed  CAS  Google Scholar 

  59. Wit AL, Cranefield PF: Triggered activity in cardiac muscle fibers of the simian mitral valve. Circ Res 38:85, 1976.

    PubMed  CAS  Google Scholar 

  60. Wit AL, Fenoglio J J, Hordoff AJ, Reemtsma K: Ultrastructure and transmembrane potentials of cardiac muscle in the human anterior mitral valve leaflet. Circulation 59:1284, 1976.

    Google Scholar 

  61. Wit AL, Cranefield PF: Triggered and automatic activity in the canine coronary sinus. Circ Res 41:435, 1977.

    Google Scholar 

  62. Cranefield PF, Aronson RS: Initiation of sustained rhythmic activity by single propagated action potentials in canine cardiac Purkinje fibers exposed to sodium-free solution or to ouabain. Circ Res 34:477, 1974.

    PubMed  CAS  Google Scholar 

  63. Cranefield PF: Action potentials and arrhythmias. Circ Res 41:415, 1977.

    PubMed  CAS  Google Scholar 

  64. Saito T, Otoguro M, Matsubara T: Electrophysiological studies on the mechanism of electrically induced sustained rhythmic activity in rabbit right atrium. Circ Res 42:199, 1978.

    PubMed  CAS  Google Scholar 

  65. Vassalle EM, Commins N, Castro C, Stuckey JH: The relationship between overdrive suppression and overdrive excitation in ventricular pacemaker in dogs. Circ Res 38:367, 1976.

    Google Scholar 

  66. Rosen MR, Hordof AJ: The slow response in human atrium. In: The Slow Inward Current and Cardiac Arrhythmias. Zipes DP, Bailey JC, Elharrar V, eds. pp 295–308. Martinus Nijhoff, The Hague, 1980.

    Chapter  Google Scholar 

  67. Goldreyer BN, Gallagher JJ, Damato AN: The electrophysiologic demonstration of atrial ectopic tachycardia in man. Am Heart J 85:205, 1973.

    Article  PubMed  CAS  Google Scholar 

  68. Wyndam CR, Arnsdorf MF, Levitsky S, Smith TC, Dhingra RC, Denes P, Rosen KM: Successful surgical excision of focal paroxysmal atrial tachycardia. Circulation 62:1365,

    Google Scholar 

  69. Pick A, Dominguez P: Nonparoxysmal AV nodal tachycardia. Circulation 16:1022, 1957.

    PubMed  CAS  Google Scholar 

  70. Garson A, Gillette PC: Junctional ectopic tachycardia in children: Electrocardiography, electrophysiology and pharmacologic response. Am J Cardiol 44:298, 1979.

    Article  PubMed  Google Scholar 

  71. Zipes DP, Gaum WE, Genetos BC, Glassman RD, Noble RJ, Fisch C: Atrial tachycardia without P waves masquerading as an AV junctional tachycardia. Circulation 55:253, 1977.

    PubMed  CAS  Google Scholar 

  72. Rosen MR, Fisch C, Hoffman BF, Danilo P, Lovelace DE, Knoebel SB: Can atrioventricular junctional escape rhythms be explained by delayed after-depolarization. Am J Cardiol 45:1272, 1980.

    Article  PubMed  CAS  Google Scholar 

  73. Moe G, Abildskov JA: Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am Heart J 58:59, 1969.

    Article  Google Scholar 

  74. Pastelin G, Mendez R, Moe GK: Participation of atrial specialized conduction pathways in atrial flutter. Circ Res 42:386, 1969.

    Google Scholar 

  75. Zipes DP, Troup PJ: New antiarrhythmic agents. Amiodarone, aprindine, disopyramide, ethmozin, mexiletine, tocainide, verapamil. Am J Cardiol 41:1005, 1978.

    Article  PubMed  CAS  Google Scholar 

  76. Carmeliet E: The slow inward current: Non-voltage clamp studies. In: The Slow Inward Current and Cardiac Arrhythmias. Zipes DP, Bailey JC, Elharrar V, eds. pp 97–110, Martinus Nijhoff, The Hague, 1980.

    Chapter  Google Scholar 

  77. Surawicz B: Depolarization-induced automaticity in atrial and ventricular myocardial fibers. In: The Slow Inward Current and Cardiac Arrhythmias. Zipes DP, Bailey JC, Elharrar V, eds. pp 375–396, Martinus Nijhoff, The Hague, 1980.

    Chapter  Google Scholar 

  78. Elharrar V, Zipes DP: Voltage modulation of automaticity in cardiac Purkinje fibers. In: The Slow Inward Current and Cardiac Arrhythmias. Zipes DP, Bailey JC, Elharrar V, eds. pp 300–416, Martinus Nijhoff, The Hague, 1980.

    Google Scholar 

  79. Gilmour RF Jr, Zipes DP: Electrophysiologic characteristics of rodent myocardium damaged by adrenaline. Cardiovasc Res 14:582, 1980.

    Article  PubMed  CAS  Google Scholar 

  80. Rosen MR, Danilo P Jr: Digitalis-induced delayed after-depolarizations. In: The Slow Inward Current and Cardiac Arrhythmias. Zipes DP, Bailey JC, Elharrar V, eds. pp 417–435, Martinus Nijhoff, The Hague, 1980.

    Chapter  Google Scholar 

  81. Kass RS, Tsien RW, Weingart R: Ionic basis of transient inward current induced by strophanthidin in cardiac Purkinje fibers. J Physiol (London) 281:209, 1978.

    CAS  Google Scholar 

  82. Elharrar V, Zipes DP: Cardiac electrophysiologic alterations during myocardial ischemia. Am J Physiol 233 (3): H329–H345, 1977.

    PubMed  CAS  Google Scholar 

  83. Elharrar V, Gaum WE, Zipes DP: Effect of drugs on conduction delay and incidence of ventricular arrhythmias induced by acute coronary occlusion in dogs. Am J Cardiol 39:544, 1977.

    Article  PubMed  CAS  Google Scholar 

  84. Schmid JR, Hanna C: A comparison of the antiarrhythmic actions of two new synthetic compounds, iproveratril and MJ1999, with quinidine and pronethalol. J Pharm Exp Ther 156:331, 1967.

    CAS  Google Scholar 

  85. Kaumann AJ, Aramendia P: Prevention of ventricular fibrillation induced coronary ligation. J Pharm Exp Ther 164:326, 1968.

    CAS  Google Scholar 

  86. Kaumann AJ, Serur JR: Optical isomers of verapamil on canine heart. Naunyn-Schmied- eberg’s Arch Pharm 291:347, 1975.

    Article  CAS  Google Scholar 

  87. Fondacaro JD, Han JH, Joon MS: Effects of verapamil on ventricular rhythm during acute coronary occlusion. Am Heart J 96:81, 1978.

    Article  PubMed  CAS  Google Scholar 

  88. Kupersmith J, Shiang H, Litwak RS, Herman MV: Electrophysiologic effects of verapamil in canine myocardial ischemia. Am J Cardiol 37:149A, 1976.

    Google Scholar 

  89. Karlsberg RP, Henry PD, Ahmed SA, Sobel BE, Roberts R: Lack of protection of ischemic myocardium by verapamil in conscious dogs. Eur J Pharm 42:339, 1978.

    Google Scholar 

  90. Nattel S, Pedersen DH, Zipes DP: Alterations in regional myocardial distribution and antiarrhythmic effects of aprindine produced by coronary artery occlusion in the dog. Cardiovasc Res. 15:80, 1981.

    Article  PubMed  CAS  Google Scholar 

  91. Lazzara R, Scherlag BJ: Role of the slow current in the generation of arrhythmias in ischemic myocardium. In: The Slow Inward Current and Cardiac Arrhythmias. Zipes DP, Bailey JC, Elharrar V, eds. pp 399–416, Martinus Nijhoff, The Hague, 1980.

    Chapter  Google Scholar 

  92. Gilmour RF Jr, Zipes DP: Electrophysiological response of vascularized hamster cardiac transplants to ischemia. Circ Res 50:599, 1982.

    PubMed  Google Scholar 

  93. Spear JF, Horowitz LN, Moore EN: The slow response in human ventricle. In: The Slow Inward Current and Cardiac Arrhythmias. Zipes DP, Bailey JC, Elharrar V, eds. pp 309- 326, Martinus Nijhoff, The Hague, 1980.

    Google Scholar 

  94. Zipes DP, Foster PR, Troup PJ, Pedersen DH: Atrial induction of ventricular tachycardia: Reentry versus triggered automaticity. Am J Cardiol 44:1, 1979.

    Article  PubMed  CAS  Google Scholar 

  95. Schamroth L, Krickler DM, Garrett C: Immediate effects of intravenous verapamil — cardiac arrhythmias. Br Med J 1:660, 1972.

    Article  PubMed  CAS  Google Scholar 

  96. Filias N: Verapamil — Behandlung bei Herzrhythmusstoriingen. Schweiz. Rundschau Med 3:66, 1974.

    Google Scholar 

  97. Singh BN, Collett JT, Chew CYC: New perspectives in the pharmacologic therapy of cardiac arrhythmias. Prog Cardiovasc Dis 22:243, 1974.

    Article  Google Scholar 

  98. Fazzini PF, Marchi F, Pucci P: Effects of verapamil on ventricular premature beats of acute myocardial infarction. Acta Cardiol 33:25, 1978.

    PubMed  CAS  Google Scholar 

  99. Pickering TG, Goulding L: Suppression of ventricular extrasystole by perhexiline. Br Heart J 40:851, 1978.

    Article  PubMed  CAS  Google Scholar 

  100. Wellens HJJ, Farre J, Bar FW: The role of the slow inward current in the genesis of ventricular tachyarrhythmias in man. In: The Slow Inward Current and Cardiac Arrhythmias. Zipes DP, Bailey JC, Elharrar V, eds. pp 507–514, Martinus Nijhoff, The Hague, 1980.

    Chapter  Google Scholar 

  101. Jolly SR, Gross GJ: Improvement in ischemic myocardial blood flow following a new calcium antagonist. Am J Physiol 239: H163–H171, 1980.

    PubMed  CAS  Google Scholar 

  102. Nakamura M, Kikuchi Y, Senda Y, Yamada A, Koiwaya Y: Myocardial blood flow following experimental coronary occlusion. Effects of diltiazem. Chest 78:205, 1980.

    PubMed  CAS  Google Scholar 

  103. Smith HJ, Singh BN, Nisbet HD, Norris RM: Effect of verapamil on infarct size following experimental coronary occlusion. Cardiovasc Res 9:569, 1975.

    Article  PubMed  CAS  Google Scholar 

  104. Reimer KA, Lower JE, Jennings RB: Effect of calcium antagonist verapamil on necrosis following temporary coronary artery occlusion in dogs. Circulation 55:581, 1977.

    PubMed  CAS  Google Scholar 

  105. Nayler WG, Ferrari R, Williams A: Protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischemic and reperfused myocardium. Am J Cardiol 46:242, 1980.

    Article  PubMed  CAS  Google Scholar 

  106. Perez JE, Sobel BE, Henry PD: Improved performance of ischemic canine myocardium in response to nifedipine and diltiazem. Am J Physiol 239: H658, 1980.

    PubMed  CAS  Google Scholar 

  107. Sherman LG, Liang C, Boden WE, Hood WB: The effect of verapamil on mechanical performance of acutely ischemic and reperfused myocardium in the conscious dog. Circ Res 48:224, 1981.

    PubMed  CAS  Google Scholar 

  108. Fleckenstein A: In: Calcium and the Heart, pp 135-138. Academic Press, New York, 1971.

    Google Scholar 

  109. Melville KI, Benfey BG: Coronary vasodilatory and cardiac adrenergic blocking effects of iproveratril. Can J Physiol Pharm 43:339, 1965.

    Article  CAS  Google Scholar 

  110. Maseri A, Chierchia S: Coronary vasospasm in ischemic heart disease. Chest 78:210, 1980.

    PubMed  CAS  Google Scholar 

  111. Ribeiro LG, Debauche TL, Brandon TA, Reduto LA, Maroko PR, Miller RR: Verapamil and nifedipine during coronary artery reperfusion: effects of ventricular arrhythmias and regional myocardial blood flow. Clin Res 27:773A, 1979.

    Google Scholar 

  112. Niato M, Kmetzo JJ, Dreifus LS: Prevention of reperfusion-induced ventricular fibrillation by antiarrhythmic agents (abstr.). Circulation (Suppl. II ) 60:88, 1979.

    Google Scholar 

  113. Vincenzi M, Morlino T, Allegri P, Barbieri E, Cappelletti F, Dehio U, Ometto R, Maiolino P: Changes in cardiovascular function induced by verapamil in healthy subjects and in patients with ischemic heart disease. Clin Cardiol 4:15, 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Zipes, D.P., Gilmour, R.F. (1983). Role of the Slow Inward Current in the Genesis of Cardiac Arrhythmias. In: Rosenbaum, M.B., Elizari, M.V. (eds) Frontiers of Cardiac Electrophysiology. Developments in Cardiovascular Medicine, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6781-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6781-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6783-0

  • Online ISBN: 978-94-009-6781-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics