Skip to main content

Myocardial cell Properties and Hypertrophy

  • Chapter
Cardiac Left Ventricular Hypertrophy

Summary

The purpose of this study was to analyze whether and to what extent (i) the force-interval relationship, (ii) the forces-arcomere length relationship and (iii) the force-velocity relationship are modified in acute hypertrophy. Mechanical properties of trabeculae that were dissected from the right ventricle of rats were studied. Three experimental models were used: (i) 3–4 months’ old Wistar rats with normal blood pressure served as controls; (ii) hyperthyroid Wistar rats of 3–4 months of age were studied after two weeks of triiodothyronine injections (50 µg daily); (iii) rats of the same age after 2–4 weeks of hypobaric hypoxia which leads to hypertrophy of the right ventricle as a result of pulmonary hypertension at elevated cardiac output. The muscles were studied in a bath, which was rapidly perfused with modified oxygenated Krebs Henseleit solution at 25 ºC at pH 7.4. Force was measured with a strain gauge. Muscle length was measured and controlled with a servomotor. Sarcomere length was measured and controlled by means of laser diffraction techniques. Mechanical recovery curves in controls and hearts following hypobaric hypoxia showed a rapid rise in the first 600 ms followed by a slow rise to plateau level that was attained at 60 seconds. Mechanical recovery in hyperthyroid muscles showed only the rapid phase of recovery. Force at test intervals between 800 ms and 100 s was 100% of steady-state value. Both passive force (F), sarcomere length (SL) relations and active F-SL relations, studied at external calcium concentration = 2.5 mM were comparable for the three groups. No difference in stress development between the three groups was observed. The influence of Ca++ on the shape of F-SL relations in controls and trabeculae of T3 rats was identical. The F-SL curve at Ca++ = 2.5 mM in trabeculae following hypobaric hypoxia was slightly steeper than in controls. Maximal shortening velocity of the sarcomeres (Vo) was 13.6 ± 3.0 µm/s (mean ± 1 SD) in controls; 17.9 ± 2.1 µ m/s in T3 rats; and 8.62 ± 2.0 µ m/s in muscle of hypobaric hypoxia rats. Results suggest 1) increased capacity and transport rate of Ca++ in structures coupling excitation with contraction in T3 hypertrophy compared to controls and hypertrophy resulting from hypobaric hypoxia; 2) no appreciable effect of hypertrophy on length dependence of activation; 3) changes of Vo in the hypertrophy states correlate with reported changes in myosin isoenzyme composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpert, N., Mulieri, L.: Heat, mechanics and myosin ATPase in normal and hypertrophied heart muscle, Fed. Proc., 41: 192–198, 1982.

    CAS  PubMed  Google Scholar 

  2. Barany, M.: ATPase activity of myosin correlated with speed of muscle shorterning, J. Gen. Physiol., 50: 197–216, 1967.

    Article  PubMed  Google Scholar 

  3. Beznak, M., Korecky, B., Thomas, G.: Regression of cardiac hypertrophy of various origin, Can. J. Physiol. Pharmacol., 47: 579–586, 1969.

    Article  CAS  PubMed  Google Scholar 

  4. Buccino, R. A., Spann Jr, J. F., Pool, P. E., Sonnenblick, E. H., Braunwald, E.: Influence of the thyroid state on the intrinsic contractile properties and energy stores of the myocardium, J. Clin. Invest., 46: 1669–1682, 1967.

    Article  CAS  PubMed  Google Scholar 

  5. Carey, R., Bove, A., Coulson, R., Spann, J.: Correlation between cardiac myosin ATPase activity and velocity of muscle shortening, Biochem. Med., 21: 235–245, 1979.

    Article  CAS  PubMed  Google Scholar 

  6. Daniels, M., Donselaar, W. van, Keurs, H. E. D. J, ter, Noble, M. I. M., Wohlfart, B.: Sarcomere-force-velocity relations in rat myocardium, J. Physiol., 324: 23P, 1982.

    Google Scholar 

  7. Ebrecht, G., Rupp, H., Jacob, R.: Alterations of mechanical parameters in chemically skinned preparations of rat myocardium as a function of isoenzyme pattern of myosin, Bas. Res. Cardiol., 77: 220–234, 1982.

    Article  CAS  Google Scholar 

  8. Everts, M. E., Hardeveld, C. van, Keurs, H. E. D. J, ter, Kassenaar, A. A. H.: Force development and metabolism in perfused skeletal muscle of euthyroid and hyperthyroid rats, Horm. Metabol. Res (in press), 1983.

    Google Scholar 

  9. Ferrans, V. J.: Human cardiac hypertrophy: structural aspects, Eur. Heart J. 3/suppl. A: 15–27, 1982.

    Google Scholar 

  10. Genovese, A., Chiariello, M., Ferro, G. Cacciapvoh, A. A., Condorelli, M.: Myocardial hypertrophy in the rat. Correlation between two experimental models, Jap. Heart J., 21: 511–517, 1980.

    Article  CAS  PubMed  Google Scholar 

  11. Genovese, A., De Alfieri, W., Latte, S., Chiariello, M., Condorelli, M.: Regression of myocardial hypertrophy in the rat following removal of acute or chronic hypobaric hypoxia, Eur. Heart J. 3/suppl. A: 161–164, 1982.

    Google Scholar 

  12. Gordon, A. M., Huxley, A. F., Julian, F. J.: The variation in isometric tension with sarcomere length in vertebrate muscle fibers, J. Physiol., 184: 170–192, 1966.

    CAS  PubMed  Google Scholar 

  13. Gordon, A. M., Pollack, G. H.: Effects of calcium on the sarcomere length-tension relation in rat cardiac muscle, implications for the Frank-Starling mechanism, Circ. Res., 47: 610–619, 1980.

    CAS  PubMed  Google Scholar 

  14. Heuningen, R. van, Rijnsburger, W. H., Keurs, H. E. D. J, ter: Sarcomere length control in striated muscle, Am. J. Physiol., 242: H411–H420, 1982.

    PubMed  Google Scholar 

  15. Hibberd, M. G., Jewell, B. R.: Calcium-and length-dependent force production in rat ventricular muscle, J. Physiol., 329: 527–540, 1982.

    CAS  PubMed  Google Scholar 

  16. Hill, A. V.: Heat of shortening and the dynamic constants of muscle, Proc. Roy. Soc. ser. B, 126, 136, 1938.

    Article  Google Scholar 

  17. Hoh, J. F. Y., McGrath, P. A., Hale P. T.: Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement, J. Mol. Cell Cardiol., 10: 1053–1076, 1977.

    Article  Google Scholar 

  18. Huxley, H. E., Hanson, J.: Changes in the cross-striation of muscle during contraction and stretch and their structural interpretation, Nature, 173: 973–976, 1954.

    Article  CAS  PubMed  Google Scholar 

  19. Jewell, B. R., Rovell, J. M.: Influence of previous mechanical events on the contractility of isolated cat papillary muscle, J. Physiol. (London), 235: 715–740, 1976.

    Google Scholar 

  20. Kentish, J. C., Keurs, H. E. D. J, ter, Noble, M. I. M., Ricciardi, L., Schouten, V. J. A.: The relationship between force, calcium concentration and sarcomere length in skinned muscle from rat ventricle, J. Physiol., P-paper (in press), 1983.

    Google Scholar 

  21. Keurs, H. E. D. J. ter, Rijnsburger, W. H., Heuningen, R. van, Nagelsmit, M. J.: Tension development and sarcomere length in rat cardiac trabeculae, Circ. Res., 46: 703–714, 1980a.

    PubMed  Google Scholar 

  22. Keurs, H. E. D. J. ter, Rijnsburger, W. H., Heuningen, R. van: Restoring forces and relaxation of rat cardiac muscle, Eur. Heart J. 1/suppl. A: 67–80, 1980b.

    Google Scholar 

  23. Keurs, H. E. D. J. ter, Wohlfart, B.: Influence of calcium concentration on maximal velocity of sarcomere shortening in rat trabeculae, J. Physiol., 330: 41P, 1982.

    Google Scholar 

  24. Keurs, H. E. D. J. ter, Noble, M. I. M., Wohlfart, B.: Velocity of sarcomere shortening in rat cardiac muscle: relationship to force, sarcomere length, Ca++ and time. Submitted to J. Physiol., 1983.

    Google Scholar 

  25. Keurs, H. E. D. J. ter: Calcium and contractility. In: Cardiac Metabolism (in press). Eds: Noble, M. I. M., Drake, A., Wiley and Sons (London) Publishers, 1983.

    Google Scholar 

  26. Keurs, H. E. D. J. ter, Kentish, J., Noble, M. I. M., Ricciardi, L., Schouten, V. J. A.: The relation between force, sarcomere length and calcium in rat heart muscle (in press), 1983.

    Google Scholar 

  27. Kissling, G., Rupp, H., Malloy, L., Jacob, R.: Alterations in cardiac oxygen consumption under chronic pressure overload: significance of the isoenzyme pattern of myosin, Bas. Res. Cardiol., 77: 255–269, 1982.

    Article  CAS  Google Scholar 

  28. Legato, M. J.: Sarcomereogenesis in human myocardium, J. Mol. Cell Cardiol., 1: 425–437, 1970.

    Article  CAS  PubMed  Google Scholar 

  29. Martin, A. F., Pagani, E. D., Solaro, R. J.: Thyroxine-induced redistribution of isoenzymes of rabbit ventricular myosin, Cire. Res., 50: 117–124, 1982.

    CAS  Google Scholar 

  30. Mercadier, J. J., Lompre, A. M., Wisnewsky, C, Samuel, J. L., Bercovici, J., Swynghedauw, B., Schwartz, K.: Myosin isoenzyme changes in several models of rat cardiac hypertrophy, Circ. Res., 49: 525–532, 1981.

    CAS  PubMed  Google Scholar 

  31. Page, E., McCallister, L. P.: Quantitative electron microscopic description of heart muscle cells; application to normal, hypertrophied and thyroxin-stimulated hearts, Am. J. Cardiol., 31: 171–181, 1973.

    Article  Google Scholar 

  32. Pope, B., Hoh, J. F. Y., Weeds, A.: The ATPase activities of rat cardiac myosin isoenzymes, FEBS Letters, 118: 205–208, 1980.

    Article  CAS  PubMed  Google Scholar 

  33. Rabinovitch, M., Zak, R.: Biochemical and cellular changes in cardiac hypertrophy, Am. Rev. Med., 23: 245–262, 1972.

    Article  Google Scholar 

  34. Rabinovitch, M., Gamble, W., Nadas, A. S., Miettinen, O. S., Reid, L.: Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features, Am. J. Physiol., 236: H818–H827. 1979.

    CAS  PubMed  Google Scholar 

  35. Rau, E., Meyer, D. K.: Diurnal rhythm of incorporation of L-(3H) leucine in myocardium of the rat. In: Biochemistry and pharmacology of myocardial hypertrophy, hypoxia and infarction, pp. 105–110, 1976, Eds. Harris, P., Ring, R. J., Fleckenstein, A., Baltimore University Park Press.

    Google Scholar 

  36. Rennie, M. J., Vaughan, J. M. M., Sugden, P. H., Bennett, G., Nead, W. W., Ford, C, Halliday, D.: Protein synthesis in human atrial and ventricular muscle measured by stable isotope labelling, Eur. J. of Clin. Invest., 13: A 26, 1983.

    Google Scholar 

  37. Scheuer, J., Bhan, A. K.: Cardiac contractile proteins, adenosine triphosphatase activity and physiological function, Circ. Res., 45: 1–12, 1979.

    CAS  PubMed  Google Scholar 

  38. Schwartz, K., Lecarpentier, Y., Martin, J. L., Lompré, A. M., Mercadier, J. J., Swynghedauw, B.: Myosin isoenzyme distribution correlates with speed of myocardial contraction, J. Mol. Cell Cardiol., 13: 1071–1075, 1981.

    Article  CAS  PubMed  Google Scholar 

  39. Wikman Cofelt, J., Reform, H., Hollosi, G., Rouleau, L., Chuck, L.: Parmley, W. W.: Comparative force-velocity relation and analysis of myosin of dog atria and ventricles, Am. J. Physiol., 243, H391–397, 1982.

    Google Scholar 

  40. Winegrad, S., McClellan, G., Tucker, M., Lin, L.: Cyclic AMP regulation of myosin isoenzymes in mammalian cardiac muscle, J. Gen. Physiol., 81: 749–765, 1983.

    Article  CAS  PubMed  Google Scholar 

  41. Wohlfart, B., Noble, M. I. M.: The cardiac excitation-contraction cycle, Pharmacol. Ther., 16: 1–43, 1982.

    Article  CAS  PubMed  Google Scholar 

  42. Wohlfart, B.: Interval-strength relation of mammalian myocardium interpreted as altered kinetics of activator calcium during the cardiac cycle. Thesis, Lund, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers

About this chapter

Cite this chapter

Keurs, H.E.D.J., Ter Mulder, B.J.M., Schouten, V.J.A. (1983). Myocardial cell Properties and Hypertrophy. In: Ter Keurs, H.E.D.J., Schipperheyn, J.J. (eds) Cardiac Left Ventricular Hypertrophy. Developments in Cardiovascular Medicine, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6759-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6759-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6761-8

  • Online ISBN: 978-94-009-6759-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics