Skip to main content

Coronary Flow Mechanics of the Hypertrophied Heart

  • Chapter
Book cover Cardiac Left Ventricular Hypertrophy

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 33))

Summary

The main determinants of coronary flow are coronary artery pressure and coronary vascular resistance. The extent of the latter depends on the contractile state of the blood vessel wall, and on the amount of compression of the vessels through intramyocardial-intravascular pressure differences.

In the autoregulated hypertrophied hearty under resting conditions the resistance vessels are more dilated at any given arterial pressure than in the normal heart, because the increased muscle mass requires a larger resting flow. As a result, vasodilatory reserve is diminished in the hypertrophied heart. If hypertrophy is caused by hypertension or supravalvular constriction of the aorta, loss of vascular reserve can in part be compensated by the high coronary perfusion pressure. This is because maximal flow increases more steeply with aortic pressure than resting flow, which increases as oxygen demand increases with aortic pressure. In aortic valvular stenosis, compression of the intramyocardial blood vessels may have additional unfavorable effects on coronary vascular reserve. Increased intramyocardial pressure not balanced by an increased perfusion pressure may be expected to increase minimal vascular resistance especially in the subendocardium and thereby reduce the flow reserve.

Coronary pressure and flow patterns can be analyzed by assuming a hemodynamic model of the coronary circulation comprising intramyocardial compliance, loaded by intramyocardial pressure, and inflow and outflow resistances. The model has been validated in open-chest experiments in which the coronary arterial inflow and coronary venous outflow are measured simultaneously. Variations of intramyocardial blood volume can be calculated from these measurements. From these studies it follows that the use of coronary vascular resistance values calculated from end-dia-stolic pressures and flows is questionable. It can be demonstrated that resistances calculated in this way partly depend upon the shape of the arterial pressure pulse.

The typical reversal of the coronary flow pattern found in severe aortic insufficiency is in keeping with the myocardial compression model. It can be predicted that systolic flow will exceed diastolic flow if the arterial pulse pressure becomes larger than half the intraventricular systolicdiastolic pressure difference. Low diastolic flow in aortic insufficiency does not imply that coronary vascular resistance is raised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Downey, J. M. and Kirk, E. S.: Inhibition of coronary blood flow by a vascular waterfall mechanism, Circ. Res., 36: 753–760, 1975.

    CAS  PubMed  Google Scholar 

  2. Sabiston, D. C. and Gregg, D. E. I Effect of cardiac contraction on coronary blood flow, Circ. Res., 15: 14–20, 1957.

    Google Scholar 

  3. Porter, W. T.: The influence of the heart-beat on the flow through the walls of the heart, Am. J. Physiol., 1: 145–163, 1898.

    Google Scholar 

  4. Spaan, J. A. E., Breuls, P.N. and Laird, J.D.: Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog, Circ. Res., 49: 584–593, 1981a.

    CAS  PubMed  Google Scholar 

  5. Wiggers, C. J.: The interplay of coronary vascular resistance and myocardial compression in regulating coronary flow, Circ. Res., 2: 271–279, 1954.

    CAS  PubMed  Google Scholar 

  6. O’Keefe, D. D., Hoffman, J. I. E., Cheitlin, R., O’Neill, M. J., Allard, J. R. and Shapkin, E.: Coronary blood flow in experimental canine left ventricular hypertrophy, Circ. Res., 43: 43–51, 1978.

    PubMed  Google Scholar 

  7. Tillmans, H., Ikeda, S., Hansen, H., Sarma, J. S. M., Fauvel, J. M. and Bing, R. J.: Microcirculation in the ventricle of the dog and turtle, Circ. Res., 34: 561–569, 1974.

    Google Scholar 

  8. Dole, W. P. and Bishop, V. S.: Regulation of coronary blood flow during individual diastoles in the dog, Circ. Res., 50: 377–385, 1982a.

    CAS  PubMed  Google Scholar 

  9. Dole, W. P. and Bishop, V. S.: Influence of autoregulation and capacitance on diastolic coronary artery pressure-flow relationships in the dog, Circ. Res., 51: 262–270, 1982b.

    Google Scholar 

  10. Bellamy, R. F.: Diastolic coronary artery pressure-flow relations in the dog, Circ. Res., 43: 92–101, 1978.

    CAS  PubMed  Google Scholar 

  11. Klocke, F. J., Weinstein, I. R., Klocke, J. F., Ellis, A. K., Kraus, D. R., Mates, R. E., Canty, J. M., Anbar, R. D., Romanowski, R. R., Wallmeyer, K. W. and Echt, M. P.: Zero flow pressures and pressure-flow relationships during single long diastoles in the canine coronary bed before and during maximal vasodilation, J. Clin. Invest., 68: 970–980, 1981.

    Article  CAS  PubMed  Google Scholar 

  12. Gregg, D. E. and Green, H. D.: Registration and interpretation of normal phasic inflow into a left coronary artery by an improved differential manometric method, Am. J. Physiol., 130: 114–125, 1940.

    Google Scholar 

  13. Arts, T.: A mathematical model of the dynamics of the left ventricle and the coronary circulation, Ph.D. Thesis, State University of Limburg, Maastricht, the Netherlands, 1978.

    Google Scholar 

  14. Arts, T., Veenstra, P.C. and Reneman, R.S.: Epicardial deformation and left ventricular wall mechanics during ejection in the dog, Am. J. Physiol., 243: H379–390, 1982.

    CAS  PubMed  Google Scholar 

  15. Feigl, E. O.: Coronary physiology, Physiol. Reviews, 63: 1–205, 1983.

    CAS  Google Scholar 

  16. Borg, T. K. and Caulfield, J. B.: The collagen matrix of the heart, Federation Proc., 40: 2037–2041, 1981.

    CAS  Google Scholar 

  17. Caulfield, J. B. and Borg, T. K.: The collagen network of the heart, Laboratory Investigation, 40: 364–372, 1979.

    CAS  PubMed  Google Scholar 

  18. Malik, A. B., Abe, T., O’Kane, H. and Geha, A.S.: Cardiac function, coronary flow, and oxygen consumption in stable left ventricular hypertrophy, Am. J. Physiol., 225: 186–191, 1973.

    CAS  PubMed  Google Scholar 

  19. Rembert, J. C., Kleinman, L. H., Fedor, J. M., Wechsler, A. S. and Greenfield Jr., J. C.: Myocardial blood flow distribution in concentric left ventricular hypertrophy, J. Clin. Invest., 62: 379–386, 1978.

    Article  CAS  PubMed  Google Scholar 

  20. Laird, J. D., Breuls, P.N., Meer, P. van der, and Spaan, J. A. E.: Can a single vasodilator be responsible for both coronary autoregulation and metabolic vasodilation?, Basic Res. Cardiol., 76: 354–358, 1981.

    Article  CAS  PubMed  Google Scholar 

  21. Spaan, J. A. E., Breuls, P. N. and Laird, J. D.: Forward coronary flow normally seen in systole is the result of both a forward and a concealed back flow, Basic Res. Cardiol., 76: 582–586, 1981b.

    Article  CAS  PubMed  Google Scholar 

  22. Pyle, R. L., Lowensohn, H. S., Khouri, E. M., Gregg, D. E. and Patterson, D. F.: Left circumflex coronary artery hemodynamics in conscious dogs with congenital subaortic stenosis, Circ. Res., 33: 34–38, 1973.

    CAS  PubMed  Google Scholar 

  23. Folts, J. D. and Rowe, G. G.: Coronary and hemodynamic effects of temporary acute aortic insufficiency in intact anesthetized dogs, Circ. Res., 35: 238–246, 1974.

    Google Scholar 

  24. Green, H. D.: The coronary blood flow in aortic stenosis, in aortic insufficiency and in arterio-venous fistula, Am. J. Physiol., 115: 94–103, 1936.

    Google Scholar 

  25. Karp, R. B. and Roe, B. B.: Effect of aortic insufficiency on phasic flow patterns in the coronary artery, Annals of Surgery, 164: 959–966, 1966.

    Article  CAS  PubMed  Google Scholar 

  26. Menno, A. D., and Schenk, W. G.: Dynamics of coronary arterial flow: flow alterations resulting from certain surgical procedures and drugs of surgical importance, Surgery, 50: 82–90. 1961.

    CAS  PubMed  Google Scholar 

  27. Downey, J. M. and Kirk, E. S.: Distribution of the coronary blood flow across the canine heart wall during systole, Circ. Res., 34: 251–257, 1974.

    CAS  PubMed  Google Scholar 

  28. Hess, D. S. and Bache, R. J.: Transmural distribution of myocardial blood flow during systole in the awake dog, Circ. Res., 38: 5–15, 1976.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers

About this chapter

Cite this chapter

Spaan, J.A.E., Bruinsma, P., Laird, J.D. (1983). Coronary Flow Mechanics of the Hypertrophied Heart. In: Ter Keurs, H.E.D.J., Schipperheyn, J.J. (eds) Cardiac Left Ventricular Hypertrophy. Developments in Cardiovascular Medicine, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6759-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6759-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6761-8

  • Online ISBN: 978-94-009-6759-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics