Skip to main content

Myocardial blood flow: clinical application and recent advances

  • Chapter
Nuclear imaging in clinical cardiology

Abstract

The uptake of oxygen and metabolic substrates by the myocardium is dependent on myocardial blood flow and also on the avidity or extraction of oxygen and substrates by the myocardium. The delivery of oxygen and substrates to the myocardium is therefore an important component in the preservation of normal contractile function. Regional changes in myocardial blood flow frequently occur in patients with coronary artery disease and these are followed by changes in left ventricular function that are transient in angina or permanent in infarction. Because of the morbidity and mortality associated with these changes in ventricular function, accurate measurement of myocardial blood flow is of great clinical importance. Many methods for measuring myocardial blood flow have been described [1]. These can be classified as (1) indicator-dilution techniques using inert gases or thermodilution, and (2) radioisotope techniques using monovalent cations, ammonia, carbon dioxide, water or microspheres. Each of these methods suffers from technical and theoretical limitations of the measurement as well as problems in the clinical applicability. This chapter will review the available methods for the clinical measurement of myocardial blood flow and will discuss their advantages and limitations when applied to clinical problems. Major emphasis will be placed on techniques which are presently in wide use as well as on newer but promising methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffman JIE: Coronary bloodflow. Circulation 62, 1: 187–198, 1980.

    Google Scholar 

  2. Kety SS and Schmidt CF: The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27: 476, 1948.

    Article  Google Scholar 

  3. Kochsiek K, Cott LA, Tauchert M, et al.: In: Coronary Heart Disease. Kattenbach M and Lichtlen P (eds). Thieme, Stuttgart, 1970: pp 137–153.

    Google Scholar 

  4. Cannon PJ, Weiss MB, Sciacca RR: Myocardial bloodflow in coronary artery disease: Studies at rest and during stress with inert gas washout techniques. Progr Cardiovasc Dis 20: 95–120, 1977.

    Article  CAS  Google Scholar 

  5. Klocke FJ, Koberstein RC, Pittman DE et al.: Effects of heterogeneous myocardial perfusion on coronary venous H2 desaturation curves and calculations of coronary flow. J Clin Invest 47: 2711–2724, 1968.

    Article  PubMed  CAS  Google Scholar 

  6. Klocke FJ, Wittenberg SM: Heterogeneity of coronary bloodflow in human coronary artery disease and experimental myocardial infarction. Am J Card 24: 782–790, 1969.

    Article  PubMed  CAS  Google Scholar 

  7. Klocke FJ, Bunnell IC, Greene DC, et al.: Average coronary bloodflow per unit weight of left ventricle in patients with and without coronary artery disease. Circulation 50: 547–559, 1974.

    PubMed  CAS  Google Scholar 

  8. Ross RS, Ueda K, Lichtlen PR, et al.: Measurement of myocardial bloodflow in animals and man by selective injection of radioactive inert gas into the coronary arteries. Circ Res 15: 28–41, 1964.

    PubMed  CAS  Google Scholar 

  9. Selwyn AP, Jones T, Turner H, et al.: Continuous assessment of regional myocardial perfusion in dogs using Krypton-81m. Circ Res 42: 771–777, 1978.

    PubMed  CAS  Google Scholar 

  10. Krasnow N, Levine HS, Wagman RJ, et al.: Coronary bloodflow measured by I131 Iodoantipyrine. Circ Res 12: 58–62, 1964.

    Google Scholar 

  11. Selwyn AP, Forse G, Fox K, et al.: Patterns of disturbed myocardial perfusion in patients with coronary artery disease. Circulation 64, 1: 83–90, 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Branthwaite MA, Bradley RD: Measurement of cardiac output by thermal dilution in man. J Appl Physiol 24: 434–438, 1968.

    PubMed  CAS  Google Scholar 

  13. Ganz W, Donoso R, Marcus HD, et al.: A new technique for measurement of cardiac output by thermodilution in man. Am J Card: 392–396, 1971.

    Google Scholar 

  14. Sapirstein LA: Fractionation of the cardiac output of rats with isotopic potassium. Circ Res 4: 689–692, 1956.

    PubMed  CAS  Google Scholar 

  15. Strauss HW, Harrison K, Langan J, et al.: Thallium-201 for myocardial imaging: Relation of Thallium-201 to regional myocardial perfusion. Circulation 50: 641–645, 1975.

    Google Scholar 

  16. Chu A, Murdock RW, Cobb FR: Relation between regional distribution of Thallium-201 and myocardial bloodflow in normal, acutely ischemic, and infarcted myocardium. Am J Cardiol 50: 1141–1144, 1982.

    Article  PubMed  CAS  Google Scholar 

  17. Weich HF, Strauss HW, Pitt B: The extraction of Thallium-201 by the myocardium. Circulation 56: 188–191, 1977.

    PubMed  CAS  Google Scholar 

  18. Hamilton GW, Narahara KA, Yee H, et al.: Myocardial imaging with Thallium-201: Effect of cardiac drugs on myocardial images and absolute tissue distribution. J Nucl Med 19: 10–16,1978.

    PubMed  CAS  Google Scholar 

  19. Pohost GM, Alpert NM, Ingwall, et al.: Thallium redistribution: Mechanisms and clinical utility. Sem Nucl Med 10: 70–93, 1980.

    Article  CAS  Google Scholar 

  20. Albro PC, Gould KL, Westcott RJ, et al.: Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. III. Clinical trial. Am J Cardiol 42: 751–760, 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Hockings B, Saltissi S, Croft DN, et al.: Effect of beta adrenergic blockade on Thallium-201 myocardial perfusion imaging. Br Heart J 49: 83–89, 1983.

    Article  PubMed  CAS  Google Scholar 

  22. Verani MS, Miller RR, Del Ventura L, et al.: Relation between regional myocardial hypoperfusion, and wall motion abnormalities during rest and exercise in coronary artery disease patients. Circulation 60, 11–134, 1979.

    Google Scholar 

  23. Bailey I, Burow R, Griffith LSC, et al.: Localizing value of Thallium-201 myocardial perfusion imaging in coronary artery disease. Am J Cardiol 39: 320, 1977.

    Google Scholar 

  24. Botvinick EH, Taradash MR, Shamer DM, et al.: Thallium-201 myocardial perfusion scintigraphy for the clinical classification of normal, abnormal and equivocal electrocardiographic stess test. Am J Cardiol 41: 43–51, 1978.

    Article  PubMed  CAS  Google Scholar 

  25. Ritchie JL, Zaret BL, Strauss HW, et al.: Myocardial imaging with Thallium-201 at rest and exercise. A multicenter study: Coronary angiographic and electrocardiographic correlations. Am J Cardiol 39: 321, 1977.

    Google Scholar 

  26. Caralis DG, Kennedy HL, Bailey IK, et al.: Thallium-201 myocardial perfusion scanning in the evaluation of asymptomatic patients with ischemic ST segment depression. Am J Cardiol 39: 320, 1977.

    Google Scholar 

  27. Brown KA, Boucher CA, Okada RD, et al.: Nuclear cardiology: Assessment of severity of myocardial and coronary artery disease. Am J Cardiol 49: 967, 1982.

    Article  Google Scholar 

  28. Goldman ME, Horowitz SF, Blake J, et al.: Can a specific pattern of exercise myocardial perfusion imaging predict prognosis? J Am Coll Cardiol 1: 655, 1983.

    Google Scholar 

  29. Gould KL: Assessment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilatation. Am J Cardiol 42: 761–768, 1978.

    Article  PubMed  CAS  Google Scholar 

  30. Maseri A, Parodi O, Severi S, et al.: Transient transmural reduction of myocardial bloodflow, demonstrated by Thallium-201 scintigraphy, as a cause of variant angina. Circulation 54: 280–288, 1976.

    PubMed  CAS  Google Scholar 

  31. Pohost GM, Zir LM, Moore RM, et al.: Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of Thallium-201. Circulation 55: 294–302, 1976.

    Google Scholar 

  32. Sullivan PJ, Wilson RA, McKusick KA, et al.: Effects of eating on the differentiation of scar from ischemia on Thallium stress myocardial images. J Nucl Med 23: 19, 1982.

    Google Scholar 

  33. Wilson RA, Okada RD, Harris DD, et al.: Influence of eating on serial exercise: Thallium myocardial and lung clearance rates. Circulation 4: 242, 1981.

    Google Scholar 

  34. Wilson RA, Okada RD, Brown KA, et al.: The effect of glucose-insulin-potassium of Thallium-201 myocardial redistribution. J Am Coll Cardiol 1: 590, 1983.

    Google Scholar 

  35. Sullivan PJ, Werre J, Okada RD, et al.: Comparison of TC-99m DMPE to 201 Thallium biodistribution. Am J Cardiol 49: 980, 1982.

    Article  Google Scholar 

  36. Bushong WC, Weintraub WS, Bodenheimer MM, et al.: Assessment of myocardial perfusion using a newly developed technetium complex: Comparison to 201 Thallium and radioactive microspheres. Am J Cardiol 49: 979, 1982.

    Article  Google Scholar 

  37. Endo M, Yamazaki T, Konno S, et al.: The direct diagnosis of human myocardial ischemia using 131 I-MAA via the selective coronary catheter: Preliminary report. Am Heart J 80: 498–506, 1970.

    Article  PubMed  CAS  Google Scholar 

  38. Ashburn WL, Braunwald E, Simon AL, et al.: Myocardial perfusion imaging in man using 99m Tc-MAA. J Nucl Med 11: 618–619, 1970.

    Google Scholar 

  39. Schelbert HR, Ashburn W, Covell J, et al.: Feasibility and hazards of the intracoronary injection of radioactive serum albumin macroaggregates for external myocardial perfusion imaging. Invest Radiol 6: 379–387, 1979.

    Article  Google Scholar 

  40. Poe N: The effects of coronary arterial injection of radio albumin macroaggregates on coronary hemodynamics and myocardial function. J Nucl Med 12: 724–731, 1971.

    PubMed  CAS  Google Scholar 

  41. Weller D, Adolph R, Wellman H, et al.: Myocardial perfusion scintigraphy after intracoronary injection of 99m Tc labeled human albumin microspheres: Toxicity and efficacy for detecting myocardial infarction in dogs; preliminary results in man. Circulation 46: 963–975, 1972.

    PubMed  CAS  Google Scholar 

  42. Hamilton GW, Ritchie JL, Allen DR, et al.: Myocardial perfusion imaging with 99m Tc or 113m In macroggregated albumin: Correlation of the perfusion image with clinical, angiographic, surgical, and histologic findings. Am Heart J 89: 708–715, 1975.

    Article  PubMed  CAS  Google Scholar 

  43. Jansen C, Judkins MP, Grames GM, et al.: Myocardial perfusion color scintigraphy with MAA. Radiology 109: 369–380, 1973.

    PubMed  CAS  Google Scholar 

  44. Ritchie JL, Hamilton GW, Williams DL, et al.: Myocardial imaging with radionuclide-labeled particles. Radiology 121: 131–138, 1976.

    PubMed  CAS  Google Scholar 

  45. Buckberg GD, Luck JC, Payne DB, et al.: Some sources of error in measuring regional bloodflow with radioactive microspheres. J Appl Physiology 31: 598–604, 1971.

    CAS  Google Scholar 

  46. Yipintsoi T, Dobbs WA Jr, Scanlon PD, et al.: Regional distribution of diggusible tracers and carbonized microspheres in the left ventricle of isolated dog hearts. Circ Res 33: 573–587, 1973.

    PubMed  CAS  Google Scholar 

  47. Selwyn AP, Allan RM, L’Abbate A, et al.: Relation between regional myocardial uptake of rubidium-82 and perfusion: Absolute reduction of cation uptake in ischemia. Am J Cardiol 50: 112–121, 1982.

    Article  PubMed  CAS  Google Scholar 

  48. Yano Y, Budinger T, Chang G, et al.: Evaluation and application of alumina-based Rb-82 generators charged with high levels of Sr-82/85. J Nucl Med 20: 961–966, 1979.

    PubMed  CAS  Google Scholar 

  49. Horlock P, Clark J, O’Brien HA, et al.: 1981 J. Radioanal. Chem. 64: 257.

    Article  Google Scholar 

  50. Braunwald E, Kloner RA: The stunned myocardium: Prolonged, postis-chemic ventricular dysfunction. Circulation 66: 1146–1149, 1982.

    Article  PubMed  CAS  Google Scholar 

  51. Goldsmith SJ, Cochavi S, Strashun A, et al.: Planar imaging of myocardial perfusion with rubidium-82, a positron emitter. Circulation 62: III: 75, 1980.

    Google Scholar 

  52. Schelbert HR, Phelps ME, Hoffman EJ, et al.: Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized tomography. Am J Cardiol 43: 209, 1979.

    Article  PubMed  CAS  Google Scholar 

  53. Schelbert HR, Phelps ME, Huang SC, et al.: N-13 Ammonia as an indicator of myocardial bloodflow. Circulation 63, 1: 1259–1272, 1981.

    Article  PubMed  CAS  Google Scholar 

  54. Schelbert HR, Henze E, Phelps ME, et al.: Assessment of regional myocardial ischemia by positron-emission computed tomography. Am Heart J 103: 588, 1982.

    Article  PubMed  CAS  Google Scholar 

  55. Bergmann S, Hack S, Tewson T, et al.: The dependence of accumulation of 13NH3 by myocardium on metabolic factors and its implications for quantitative assessment of perfusion. Circulation 61, 1: 34–43, 1980.

    PubMed  CAS  Google Scholar 

  56. Allan RM, Jones T, Rhodes CG, et al.: Quantitation of myocardial perfusion in man using oxygen-15 and positron tomography. Am J Cardiol 47: 481, 1981.

    Article  Google Scholar 

  57. Bergmann SR, Fox KAA, Rand AL, et al.: Quantitation of myocardial perfusion with radiolabeled water. J Am Coll Cardiol 1: 577, 1983.

    Article  Google Scholar 

  58. Huang SC, Schwaigen M, Carson RE, et al.: Noninvasive quantitation of myocardial bloodflow by 0–15 water and positron emission tomography. J Am Coll Cardiol 1: 578, 1983.

    Google Scholar 

  59. Turton D, Brady F, Pike V, et al.: submitted for publication.

    Google Scholar 

  60. Wisenberg G, Schelbert HR, Hoffman EJ, et al.: In vivo quantitation of regional myocardial bloodflow by positron-emission computed tomography. Circulation 63: 6: 1248–1258, 1981.

    Article  PubMed  CAS  Google Scholar 

  61. Selwyn AP, Allan RM, Brady F: Clin Sci 62: 3, 1982.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers

About this chapter

Cite this chapter

Wilson, R. et al. (1984). Myocardial blood flow: clinical application and recent advances. In: Simoons, M.L., Reiber, J.H.C. (eds) Nuclear imaging in clinical cardiology. Developments in Cardiovascular Medicine, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6744-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6744-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6746-5

  • Online ISBN: 978-94-009-6744-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics